微积分之不定积分
课程目标
- 理解不定积分的定义和基本计算规则。
- 掌握不定积分的基本技巧,如分部积分法、代换法等。
- 熟悉常见函数的不定积分公式。
- 通过实际例题和练习巩固对不定积分的理解。
一、不定积分的定义与基本性质
1. 定义
不定积分是求函数
F
(
x
)
F(x)
F(x) 的反导数的过程,记作:
∫
f
(
x
)
d
x
=
F
(
x
)
+
C
\int f(x) \, dx = F(x) + C
∫f(x)dx=F(x)+C
其中:
- f ( x ) f(x) f(x):被积函数。
- F ( x ) F(x) F(x):原函数,满足 F ′ ( x ) = f ( x ) F'(x) = f(x) F′(x)=f(x)。
- C C C:积分常数。
2. 基本积分法则
不定积分具有以下基本性质:
- ∫ ( f ( x ) + g ( x ) ) d x = ∫ f ( x ) d x + ∫ g ( x ) d x \int (f(x) + g(x)) \, dx = \int f(x) \, dx + \int g(x) \, dx ∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx
- ∫ c ⋅ f ( x ) d x = c ⋅ ∫ f ( x ) d x \int c \cdot f(x) \, dx = c \cdot \int f(x) \, dx ∫c⋅f(x)dx=c⋅∫f(x)dx,其中 c c c 是常数。
案例:基本计算
求解
∫
(
3
x
2
+
5
x
)
d
x
\int (3x^2 + 5x) \, dx
∫(3x2+5x)dx:
∫
(
3
x
2
+
5
x
)
d
x
=
∫
3
x
2
d
x
+
∫
5
x
d
x
\int (3x^2 + 5x) \, dx = \int 3x^2 \, dx + \int 5x \, dx
∫(3x2+5x)dx=∫3x2dx+∫5xdx
=
3
⋅
x
3
3
+
5
⋅
x
2
2
+
C
=
x
3
+
5
x
2
2
+
C
= 3 \cdot \frac{x^3}{3} + 5 \cdot \frac{x^2}{2} + C = x^3 + \frac{5x^2}{2} + C
=3⋅3x3+5⋅2x2+C=x3+25x2+C
二、基本积分技巧
1. 常数倍法
∫ c ⋅ f ( x ) d x = c ⋅ ∫ f ( x ) d x \int c \cdot f(x) \, dx = c \cdot \int f(x) \, dx ∫c⋅f(x)dx=c⋅∫f(x)dx
2. 分部积分法
若
u
(
x
)
u(x)
u(x) 和
v
(
x
)
v(x)
v(x) 可微,分部积分公式为:
∫
u
(
x
)
v
′
(
x
)
d
x
=
u
(
x
)
v
(
x
)
−
∫
u
′
(
x
)
v
(
x
)
d
x
\int u(x) \, v'(x) \, dx = u(x) v(x) - \int u'(x) v(x) \, dx
∫u(x)v′(x)dx=u(x)v(x)−∫u′(x)v(x)dx
3. 代换法
当被积函数的形式复杂时,可以通过代换简化计算:
- 设 u = g ( x ) u = g(x) u=g(x),则 d x = d u g ′ ( x ) dx = \frac{du}{g'(x)} dx=g′(x)du。
- 积分公式变为:
∫ f ( g ( x ) ) g ′ ( x ) d x = ∫ f ( u ) d u \int f(g(x)) g'(x) \, dx = \int f(u) \, du ∫f(g(x))g′(x)dx=∫f(u)du
案例:分部积分法
求解 ∫ x e x d x \int x e^x \, dx ∫xexdx:
- 设 u = x u = x u=x, d v = e x d x dv = e^x dx dv=exdx,则 d u = d x du = dx du=dx, v = e x v = e^x v=ex。
- 根据分部积分公式:
∫ x e x d x = u v − ∫ v d u = x e x − ∫ e x d x \int x e^x \, dx = u v - \int v \, du = x e^x - \int e^x \, dx ∫xexdx=uv−∫vdu=xex−∫exdx - 继续计算:
∫ x e x d x = x e x − e x + C = e x ( x − 1 ) + C \int x e^x \, dx = x e^x - e^x + C = e^x (x - 1) + C ∫xexdx=xex−ex+C=ex(x−1)+C
三、基本积分公式
以下是不定积分的常用公式:
-
幂函数积分:
∫ x n d x = x n + 1 n + 1 + C ( n ≠ − 1 ) \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1) ∫xndx=n+1xn+1+C(n=−1) -
指数函数积分:
∫ e x d x = e x + C , ∫ a x d x = a x ln a + C ( a > 0 , a ≠ 1 ) \int e^x \, dx = e^x + C, \quad \int a^x \, dx = \frac{a^x}{\ln a} + C \, (a > 0, a \neq 1) ∫exdx=ex+C,∫axdx=lnaax+C(a>0,a=1) -
三角函数积分:
∫ sin x d x = − cos x + C , ∫ cos x d x = sin x + C \int \sin x \, dx = -\cos x + C, \quad \int \cos x \, dx = \sin x + C ∫sinxdx=−cosx+C,∫cosxdx=sinx+C
∫ sec 2 x d x = tan x + C , ∫ csc 2 x d x = − cot x + C \int \sec^2 x \, dx = \tan x + C, \quad \int \csc^2 x \, dx = -\cot x + C ∫sec2xdx=tanx+C,∫csc2xdx=−cotx+C
案例:代换法
求解 ∫ cos ( 3 x ) d x \int \cos(3x) \, dx ∫cos(3x)dx:
- 设 u = 3 x u = 3x u=3x,则 d u = 3 d x du = 3 dx du=3dx,即 d x = d u 3 dx = \frac{du}{3} dx=3du。
- 代入公式:
∫ cos ( 3 x ) d x = ∫ cos ( u ) ⋅ 1 3 d u = 1 3 ∫ cos ( u ) d u \int \cos(3x) \, dx = \int \cos(u) \cdot \frac{1}{3} \, du = \frac{1}{3} \int \cos(u) \, du ∫cos(3x)dx=∫cos(u)⋅31du=31∫cos(u)du - 计算积分:
∫ cos ( u ) d u = sin ( u ) + C \int \cos(u) \, du = \sin(u) + C ∫cos(u)du=sin(u)+C - 回代
u
=
3
x
u = 3x
u=3x:
∫ cos ( 3 x ) d x = 1 3 sin ( 3 x ) + C \int \cos(3x) \, dx = \frac{1}{3} \sin(3x) + C ∫cos(3x)dx=31sin(3x)+C
四、课堂活动与应用案例
1. 应用案例:计算抛物线的面积
计算抛物线 y = x 2 y = x^2 y=x2 和直线 y = 4 y = 4 y=4 围成的区域面积。
-
求积分范围:
抛物线与直线相交时 x 2 = 4 ⇒ x = − 2 , 2 x^2 = 4 \Rightarrow x = -2, 2 x2=4⇒x=−2,2。 -
面积公式:
A = ∫ − 2 2 ( 4 − x 2 ) d x A = \int_{-2}^2 (4 - x^2) \, dx A=∫−22(4−x2)dx -
分步计算:
A = ∫ − 2 2 4 d x − ∫ − 2 2 x 2 d x A = \int_{-2}^2 4 \, dx - \int_{-2}^2 x^2 \, dx A=∫−224dx−∫−22x2dx
计算第一项:
∫ − 2 2 4 d x = 4 ⋅ [ x ] − 2 2 = 4 ⋅ ( 2 − ( − 2 ) ) = 16 \int_{-2}^2 4 \, dx = 4 \cdot \left[x\right]_{-2}^2 = 4 \cdot (2 - (-2)) = 16 ∫−224dx=4⋅[x]−22=4⋅(2−(−2))=16
计算第二项:
∫ − 2 2 x 2 d x = [ x 3 3 ] − 2 2 = ( 2 ) 3 3 − ( − 2 ) 3 3 = 8 3 − ( − 8 3 ) = 16 3 \int_{-2}^2 x^2 \, dx = \left[\frac{x^3}{3}\right]_{-2}^2 = \frac{(2)^3}{3} - \frac{(-2)^3}{3} = \frac{8}{3} - \left(-\frac{8}{3}\right) = \frac{16}{3} ∫−22x2dx=[3x3]−22=3(2)3−3(−2)3=38−(−38)=316
总面积:
A = 16 − 16 3 = 48 3 − 16 3 = 32 3 A = 16 - \frac{16}{3} = \frac{48}{3} - \frac{16}{3} = \frac{32}{3} A=16−316=348−316=332
2. 绘制图像
利用 Python 绘制抛物线和直线的图像,直观展示面积:
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-2.5, 2.5, 500)
y_parabola = x**2
y_line = 4
plt.fill_between(x, y_line, y_parabola, where=(y_line > y_parabola), color='lightblue', alpha=0.5, label='Area')
plt.plot(x, y_parabola, label='$y = x^2$')
plt.plot(x, y_line * np.ones_like(x), label='$y = 4$', linestyle='--')
plt.axhline(0, color='black', linewidth=0.8)
plt.axvline(0, color='black', linewidth=0.8)
plt.xlabel('x')
plt.ylabel('y')
plt.title('Area between $y = x^2$ and $y = 4$')
plt.legend()
plt.grid(True)
plt.show()
五、课堂练习
-
计算以下不定积分:
- ∫ ( x 3 − 2 x 2 + 1 ) d x \int (x^3 - 2x^2 + 1) \, dx ∫(x3−2x2+1)dx
- ∫ e 2 x d x \int e^{2x} \, dx ∫e2xdx
- ∫ cos 2 ( x ) d x \int \cos^2(x) \, dx ∫cos2(x)dx(提示:用三角恒等式 cos 2 ( x ) = 1 + cos ( 2 x ) 2 \cos^2(x) = \frac{1 + \cos(2x)}{2} cos2(x)=21+cos(2x))
-
用分部积分法计算:
- ∫ x sin ( x ) d x \int x \sin(x) \, dx ∫xsin(x)dx
- ∫ ln ( x ) d x \int \ln(x) \, dx ∫ln(x)dx
-
用代换法计算:
- ∫ sin ( 5 x ) d x \int \sin(5x) \, dx ∫sin(5x)dx
- ∫ 1 x 2 + 4 d x \int \frac{1}{x^2 + 4} \, dx ∫x2+41dx