微积分之不定积分

微积分之不定积分


课程目标

  1. 理解不定积分的定义和基本计算规则。
  2. 掌握不定积分的基本技巧,如分部积分法、代换法等。
  3. 熟悉常见函数的不定积分公式。
  4. 通过实际例题和练习巩固对不定积分的理解。

一、不定积分的定义与基本性质

1. 定义

不定积分是求函数 F ( x ) F(x) F(x) 的反导数的过程,记作:
∫ f ( x )   d x = F ( x ) + C \int f(x) \, dx = F(x) + C f(x)dx=F(x)+C
其中:

  • f ( x ) f(x) f(x):被积函数。
  • F ( x ) F(x) F(x):原函数,满足 F ′ ( x ) = f ( x ) F'(x) = f(x) F(x)=f(x)
  • C C C:积分常数。
2. 基本积分法则

不定积分具有以下基本性质:

  1. ∫ ( f ( x ) + g ( x ) )   d x = ∫ f ( x )   d x + ∫ g ( x )   d x \int (f(x) + g(x)) \, dx = \int f(x) \, dx + \int g(x) \, dx (f(x)+g(x))dx=f(x)dx+g(x)dx
  2. ∫ c ⋅ f ( x )   d x = c ⋅ ∫ f ( x )   d x \int c \cdot f(x) \, dx = c \cdot \int f(x) \, dx cf(x)dx=cf(x)dx,其中 c c c 是常数。
案例:基本计算

求解 ∫ ( 3 x 2 + 5 x )   d x \int (3x^2 + 5x) \, dx (3x2+5x)dx
∫ ( 3 x 2 + 5 x )   d x = ∫ 3 x 2   d x + ∫ 5 x   d x \int (3x^2 + 5x) \, dx = \int 3x^2 \, dx + \int 5x \, dx (3x2+5x)dx=3x2dx+5xdx
= 3 ⋅ x 3 3 + 5 ⋅ x 2 2 + C = x 3 + 5 x 2 2 + C = 3 \cdot \frac{x^3}{3} + 5 \cdot \frac{x^2}{2} + C = x^3 + \frac{5x^2}{2} + C =33x3+52x2+C=x3+25x2+C


二、基本积分技巧

1. 常数倍法

∫ c ⋅ f ( x )   d x = c ⋅ ∫ f ( x )   d x \int c \cdot f(x) \, dx = c \cdot \int f(x) \, dx cf(x)dx=cf(x)dx

2. 分部积分法

u ( x ) u(x) u(x) v ( x ) v(x) v(x) 可微,分部积分公式为:
∫ u ( x )   v ′ ( x )   d x = u ( x ) v ( x ) − ∫ u ′ ( x ) v ( x )   d x \int u(x) \, v'(x) \, dx = u(x) v(x) - \int u'(x) v(x) \, dx u(x)v(x)dx=u(x)v(x)u(x)v(x)dx

3. 代换法

当被积函数的形式复杂时,可以通过代换简化计算:

  • u = g ( x ) u = g(x) u=g(x),则 d x = d u g ′ ( x ) dx = \frac{du}{g'(x)} dx=g(x)du
  • 积分公式变为:
    ∫ f ( g ( x ) ) g ′ ( x )   d x = ∫ f ( u )   d u \int f(g(x)) g'(x) \, dx = \int f(u) \, du f(g(x))g(x)dx=f(u)du
案例:分部积分法

求解 ∫ x e x   d x \int x e^x \, dx xexdx

  1. u = x u = x u=x d v = e x d x dv = e^x dx dv=exdx,则 d u = d x du = dx du=dx v = e x v = e^x v=ex
  2. 根据分部积分公式:
    ∫ x e x   d x = u v − ∫ v   d u = x e x − ∫ e x   d x \int x e^x \, dx = u v - \int v \, du = x e^x - \int e^x \, dx xexdx=uvvdu=xexexdx
  3. 继续计算:
    ∫ x e x   d x = x e x − e x + C = e x ( x − 1 ) + C \int x e^x \, dx = x e^x - e^x + C = e^x (x - 1) + C xexdx=xexex+C=ex(x1)+C

三、基本积分公式

以下是不定积分的常用公式:

  1. 幂函数积分:
    ∫ x n   d x = x n + 1 n + 1 + C ( n ≠ − 1 ) \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1) xndx=n+1xn+1+C(n=1)

  2. 指数函数积分:
    ∫ e x   d x = e x + C , ∫ a x   d x = a x ln ⁡ a + C   ( a > 0 , a ≠ 1 ) \int e^x \, dx = e^x + C, \quad \int a^x \, dx = \frac{a^x}{\ln a} + C \, (a > 0, a \neq 1) exdx=ex+C,axdx=lnaax+C(a>0,a=1)

  3. 三角函数积分:
    ∫ sin ⁡ x   d x = − cos ⁡ x + C , ∫ cos ⁡ x   d x = sin ⁡ x + C \int \sin x \, dx = -\cos x + C, \quad \int \cos x \, dx = \sin x + C sinxdx=cosx+C,cosxdx=sinx+C
    ∫ sec ⁡ 2 x   d x = tan ⁡ x + C , ∫ csc ⁡ 2 x   d x = − cot ⁡ x + C \int \sec^2 x \, dx = \tan x + C, \quad \int \csc^2 x \, dx = -\cot x + C sec2xdx=tanx+C,csc2xdx=cotx+C

案例:代换法

求解 ∫ cos ⁡ ( 3 x )   d x \int \cos(3x) \, dx cos(3x)dx

  1. u = 3 x u = 3x u=3x,则 d u = 3 d x du = 3 dx du=3dx,即 d x = d u 3 dx = \frac{du}{3} dx=3du
  2. 代入公式:
    ∫ cos ⁡ ( 3 x )   d x = ∫ cos ⁡ ( u ) ⋅ 1 3   d u = 1 3 ∫ cos ⁡ ( u )   d u \int \cos(3x) \, dx = \int \cos(u) \cdot \frac{1}{3} \, du = \frac{1}{3} \int \cos(u) \, du cos(3x)dx=cos(u)31du=31cos(u)du
  3. 计算积分:
    ∫ cos ⁡ ( u )   d u = sin ⁡ ( u ) + C \int \cos(u) \, du = \sin(u) + C cos(u)du=sin(u)+C
  4. 回代 u = 3 x u = 3x u=3x
    ∫ cos ⁡ ( 3 x )   d x = 1 3 sin ⁡ ( 3 x ) + C \int \cos(3x) \, dx = \frac{1}{3} \sin(3x) + C cos(3x)dx=31sin(3x)+C

四、课堂活动与应用案例

1. 应用案例:计算抛物线的面积

计算抛物线 y = x 2 y = x^2 y=x2 和直线 y = 4 y = 4 y=4 围成的区域面积。

  1. 求积分范围:
    抛物线与直线相交时 x 2 = 4 ⇒ x = − 2 , 2 x^2 = 4 \Rightarrow x = -2, 2 x2=4x=2,2

  2. 面积公式:
    A = ∫ − 2 2 ( 4 − x 2 )   d x A = \int_{-2}^2 (4 - x^2) \, dx A=22(4x2)dx

  3. 分步计算:
    A = ∫ − 2 2 4   d x − ∫ − 2 2 x 2   d x A = \int_{-2}^2 4 \, dx - \int_{-2}^2 x^2 \, dx A=224dx22x2dx
    计算第一项:
    ∫ − 2 2 4   d x = 4 ⋅ [ x ] − 2 2 = 4 ⋅ ( 2 − ( − 2 ) ) = 16 \int_{-2}^2 4 \, dx = 4 \cdot \left[x\right]_{-2}^2 = 4 \cdot (2 - (-2)) = 16 224dx=4[x]22=4(2(2))=16
    计算第二项:
    ∫ − 2 2 x 2   d x = [ x 3 3 ] − 2 2 = ( 2 ) 3 3 − ( − 2 ) 3 3 = 8 3 − ( − 8 3 ) = 16 3 \int_{-2}^2 x^2 \, dx = \left[\frac{x^3}{3}\right]_{-2}^2 = \frac{(2)^3}{3} - \frac{(-2)^3}{3} = \frac{8}{3} - \left(-\frac{8}{3}\right) = \frac{16}{3} 22x2dx=[3x3]22=3(2)33(2)3=38(38)=316
    总面积:
    A = 16 − 16 3 = 48 3 − 16 3 = 32 3 A = 16 - \frac{16}{3} = \frac{48}{3} - \frac{16}{3} = \frac{32}{3} A=16316=348316=332


2. 绘制图像

利用 Python 绘制抛物线和直线的图像,直观展示面积:

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-2.5, 2.5, 500)
y_parabola = x**2
y_line = 4

plt.fill_between(x, y_line, y_parabola, where=(y_line > y_parabola), color='lightblue', alpha=0.5, label='Area')
plt.plot(x, y_parabola, label='$y = x^2$')
plt.plot(x, y_line * np.ones_like(x), label='$y = 4$', linestyle='--')
plt.axhline(0, color='black', linewidth=0.8)
plt.axvline(0, color='black', linewidth=0.8)
plt.xlabel('x')
plt.ylabel('y')
plt.title('Area between $y = x^2$ and $y = 4$')
plt.legend()
plt.grid(True)
plt.show()

在这里插入图片描述


五、课堂练习

  1. 计算以下不定积分:

    • ∫ ( x 3 − 2 x 2 + 1 )   d x \int (x^3 - 2x^2 + 1) \, dx (x32x2+1)dx
    • ∫ e 2 x   d x \int e^{2x} \, dx e2xdx
    • ∫ cos ⁡ 2 ( x )   d x \int \cos^2(x) \, dx cos2(x)dx(提示:用三角恒等式 cos ⁡ 2 ( x ) = 1 + cos ⁡ ( 2 x ) 2 \cos^2(x) = \frac{1 + \cos(2x)}{2} cos2(x)=21+cos(2x)
  2. 用分部积分法计算:

    • ∫ x sin ⁡ ( x )   d x \int x \sin(x) \, dx xsin(x)dx
    • ∫ ln ⁡ ( x )   d x \int \ln(x) \, dx ln(x)dx
  3. 用代换法计算:

    • ∫ sin ⁡ ( 5 x )   d x \int \sin(5x) \, dx sin(5x)dx
    • ∫ 1 x 2 + 4   d x \int \frac{1}{x^2 + 4} \, dx x2+41dx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值