深度学习(四)——卷积神经网络CNN

卷积层

在这里插入图片描述
如下图,从底层看起把两个矩阵卷积为两个点,第二层再把一个矩阵卷积为一个点,所以这是两层卷积
在这里插入图片描述
DNN是输入层直接全连接隐藏层
而CNN是输入层先连接卷积层,再连接隐藏层

如何卷积?
例:如下图,从绿色的第0行开始先选33和黄色的33相乘(这里是对应位置相乘)后有4个地方是1,所以红色的第0行0列就填4,然后绿色继续右移Stride=2步,再与黄色的相乘…依次类推,最后的结果就是把4个3*3矩阵变成4个点了
在这里插入图片描述
上图中的黄色矩阵就是卷积核,红色就是卷积后的特征图,卷积就是对特征进行提取

在这里插入图片描述
不同卷积核卷积的结果对比:
在这里插入图片描述
代码:
在这里插入图片描述
第一个输出为:2 ,427 ,640 ,3
意思是:2张图,每一张图高427,宽640,3通道即rgb彩色图,不是1通道的黑白图

上图代码中2个卷积核,一个垂直的,一个水平的

接上图代码
在这里插入图片描述
strides步长,两边的1不用管,第一个2是高度的步长,也就是向右移的步长,第二个2是宽度的,即向下移的步长

padding="SAME"做0填充,使得边缘数据也被算上,如下图

在这里插入图片描述

下面我们来看看3通道,2个卷积核(卷积核的通道数和原数据的通道数是一样的)的具体卷积过程:如下图
在这里插入图片描述
上图中第一个通道相乘(对应位置相乘加和)是4,第二个是0,第三个是1,截距是1,加和是6,所以第一个特征图(绿色矩阵)的第一个数字是6,然后蓝色矩阵右移两步继续计算…算完后第一个绿色矩阵就是第一个卷积核Filter W0卷积后的特征图,第二个绿色矩阵就是第二个卷积核Filter W1卷积后的特征图,可以看出上述的卷积过程并没有设置padding=“SAME”。

计算过程的数学表达式:
在这里插入图片描述

填充

在这里插入图片描述
在这里插入图片描述

池化

在这里插入图片描述
最大池化:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Filter map的个数取决于卷积核的个数,池化不会改变Filter map的数量

评估

在这里插入图片描述

代码

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data


mnist = input_data.read_data_sets('MNIST_data_bak/', one_hot=True)
sess = tf.InteractiveSession()


# 截断的正太分布噪声,标准差设为0.1
# 同时因为我们使用ReLU,也给偏置项增加一些小的正值0.1用来避免死亡节点(dead neurons)
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)


def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)


# 卷积层和池化层也是接下来要重复使用的,因此也为它们定义创建函数

# tf.nn.conv2d是TensorFlow中的2维卷积函数,参数中x是输入,W是卷积的参数,比如[5, 5, 1, 32]
# 前面两个数字代表卷积核的尺寸,第三个数字代表有多少个channel,因为我们只有灰度单色,所以是1,如果是彩色的RGB图片,这里是3
# 最后代表核的数量,也就是这个卷积层会提取多少类的特征

# Strides代表卷积模板移动的步长,都是1代表会不遗漏地划过图片的每一个点!Padding代表边界的处理方式,这里的SAME代表给
# 边界加上Padding让卷积的输出和输入保持同样SAME的尺寸
def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')


# tf.nn.max_pool是TensorFlow中的最大池化函数,我们这里使用2*2的最大池化,即将2*2的像素块降为1*1的像素
# 最大池化会保留原始像素块中灰度值最高的那一个像素,即保留最显著的特征,因为希望整体上缩小图片尺寸,因此池化层
# strides也设为横竖两个方向以2为步长。如果步长还是1,那么我们会得到一个尺寸不变的图片
def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')


# 因为卷积神经网络会利用到空间结构信息,因此需要将1D的输入向量转为2D的图片结构,即从1*784的形式转为原始的28*28的结构
# 同时因为只有一个颜色通道,故最终尺寸为[-1, 28, 28, 1],前面的-1代表样本数量不固定,最后的1代表颜色通道数量
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1])

# 定义我的第一个卷积层,我们先使用前面写好的函数进行参数初始化,包括weights和bias,这里的[5, 5, 1, 32]代表卷积
# 核尺寸为5*5,1个颜色通道,32个不同的卷积核,然后使用conv2d函数进行卷积操作,并加上偏置项,接着再使用ReLU激活函数进行
# 非线性处理,最后,使用最大池化函数max_pool_2*2对卷积的输出结果进行池化操作
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

# 第二层和第一个一样,但是卷积核变成了64
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

# 因为前面经历了两次步长为2*2的最大池化,所以边长已经只有1/4了,图片尺寸由28*28变成了7*7
# 而第二个卷积层的卷积核数量为64,其输出的tensor尺寸即为7*7*64
# 我们使用tf.reshape函数对第二个卷积层的输出tensor进行变形,将其转成1D的向量
# 然后连接一个全连接层,隐含节点为1024,并使用ReLU激活函数
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

# 防止过拟合,使用Dropout层
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# 接 Softmax分类
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

# 定义损失函数
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv),
                                              reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

# 训练
tf.global_variables_initializer().run()
for i in range(20000):
    batch = mnist.train.next_batch(50)
    if i % 100 == 0:
        train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1],
                                                  keep_prob: 1.0})
        print("step %d, training accuracy %g" % (i, train_accuracy))
    train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g" % accuracy.eval(feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0
}))

# 最后,这个CNN模型可以得到的准确率约为99.2%,基本可以满足对手写数字识别准确率的要求
# 相比之前的MLP的2%的错误率,CNN的错误率下降了大约60%,这里主要的性能提升都来自于更优秀的网络设计
# 即卷积网络对图像特征的提取和抽象能力,依靠卷积核的权值共享,CNN的参数数量并没有爆炸,降低计算量的同时
# 也减轻了过拟合,因此整个模型的性能有较大的提升,这里我们只是实现了一个简单的卷积神经网络,没有复杂的Trick
# 接下来我们实现复杂一点的卷积网络,MNIST数据集已经不适合用来评测其性能
# 我们将使用CIFAR-10数据集进行训练,这也是深度学习可以大幅领先其它模型的一个数据集


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值