模型复现:VGG-16

本文深入探讨了VGG-16网络在图像识别中的应用,通过使用小尺寸卷积滤波器增加网络深度,实现了性能的显著提升。文章详细介绍了VGG-16的网络结构,包括6个块、5个卷积块和1个全连接块,并提供了PyTorch实现的代码示例。同时,文中提出了关于全连接层神经元数量、滤波器数量的思考,强调了flatten操作的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

VGG-16是在图像分类和检测任务中很常用的一种网络结构。 本文通过pytorch来复现一下。

文章摘要

In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3×3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16–19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision

大意就是说本文探讨了网络深度对大规模图像识别的精度影响,发现使用小卷积核、深层网络的情况下,分类精度有较大的提升,且较容易推广使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值