机器学习(三)——矩阵和线性代数

  • 矩阵
    SVD
    矩阵的乘法
    状态转移矩阵
    状态转移矩阵
  • 特征值和特征向量
    对称阵
    正交阵
    正定阵
    数据白化
  • 矩阵求导
    向量对向量求导
    标量对向量求导
    标量对矩阵求导

一.矩阵

1.1 SVD

奇异值 分解(Singular Value Decomposition),假设A是一个m×n阶矩阵,则存在一个分解使得
        Σ对角线上的元素称为矩阵A的奇异值;
         U的第i列称为A的关于σi的左奇异向量;
         V的第i列称为A的关于σi的右奇异向量。

        通常将奇异值由大而小排列。如此Σ便能由M唯一确定了。(虽然U和V仍然不能确定)而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。也就是说,我们也可以用前r大的奇异值来近似描述矩阵,么SVD就起到一个特征选择的作用或者是降维的作用。

1.2 代数余子式

在一个n阶行列式A中,把(i,j)元素aij所在的第i 行和第j列划去后,留下的n-1阶方阵的行列式叫做元素aij的余子式,记作Mij

注意:行列式是数值,因此余子式和代数余子式也是数值;余子式可能也可能是负数。

 

1.3 伴随矩阵

注意:位于第j行i列

 

1.4  方阵的逆

当方阵的行列式不为0时,有:

如果不是方正,请参考矩阵的广义逆

 

1.5 范德蒙行列式


1.6 矩阵的乘法

AAmsm∗s阶的矩阵,BBsns∗n阶的矩阵,那么,C=ABC=A∗Bmnm∗n阶的矩阵,其中

cij=k=1saijbkjcij=∑k=1saijbkj

1.7 矩阵和向量的乘法
  • AAmnm∗n阶的矩阵,XXn1n∗1阶的矩阵,则AxAxm1m∗1的列向量,记y=Axy→=A·x→
  • 由于nn维列向量和n维空间的点一一对应,上式实际给出了从nn维空间的点到mm维空间的的线性变换。
    • 旋转、平移
1.8 状态转移矩阵

数学解释:
设一个初始概率分布ππ(只是一个向量)
- 第n+1n+1代中处于第jj个阶层的概率为:

π(Xn+1=j)=i=1kπ(Xn=i)P(Xn+1=j|Xn=i)π(Xn+1=j)=∑i=1kπ(Xn=i)·P(Xn+1=j|Xn=i)

=>πn+1=πnP=>πn+1=πn·P

原理:全概率公式: 
参考马尔科夫过程:https://blog.csdn.net/u010459100/article/details/51657955

1.9.矩阵的秩

  • mnm∗n的矩阵A中,任取kkkk列,不改变这k2k2个元素在AA中的次序,得到kk阶方阵,称为矩阵AAk阶子式
  • 设在矩阵A中有一个不等于00rr阶子式DD,且所有r+1r+1阶子式全等于00(如果存在的话),那么DD称为矩阵AA的最高阶非零子式,rr称为矩阵AA的秩,记作R(A)=rR(A)=r
    • 如果一个矩阵|A|0|A|≠0那么可以说这个矩阵式满秩的
    • nnn∗n的可逆矩阵,秩为n
      矩阵的秩等于它的行列向量组的秩


1.91 秩和线性方程组的解的关系

这里写图片描述

对于n元线性方程组Ax = b:
  • 无解的充要条件是R(A)<R(A,b)R(A)<R(A,b)
  • 唯一解的充要条件是R(A)=R(A,b)=nR(A)=R(A,b)=n
  • Ax= 0的只有零解的充要条件是R(A)=nR(A)=n
  • 无穷解的充要条件是R(A)=R(A,b)<nR(A)=R(A,b)<n
  • Ax= b有解的充要条件是R(A)=R(A,b)R(A)=R(A,b)
  • Ax= 0的非零解的充要条件是R(A)<n


1.10向量组

向量b能由向量组A:a1,a2,...,amA:a1,a2,...,am线性表示的充
要条件是矩阵A=(a1,a2,...am)A=(a1,a2,...am)的秩等于矩阵
B=(a1,a2,...am,b)B=(a1,a2,...am,b)的秩。

因为有解的条件是秩相等。

B=(a1,a2,...am,b)B=(a1,a2,...am,b) = (λ1a1,λ2a2,...λnam)(λ1a1,λ2a2,...λnam)

  • 若向量组A与向量组B能相互线性表示,则称两个向量组等价。

1.11系数矩阵

参考:https://blog.csdn.net/IOThouzhuo/article/details/50836787


.特征值和特征向量

2.1正交阵

  • nn阶矩阵A满足ATA=IATA=I,称A为正交矩阵,简称正交阵。
    • AA是正交阵的充要条件:A的列(行)向量都是单位向量,且两两正交
  • AA是正交阵,X为向量,则Ax称作正交变换。
    • 正交变换不改变向量长度。

2.2特征值和特征向量

A是n阶矩阵,若数λλ和n维非0列向量满足Ax=λxAx=λx,那么,数称为A的特征向值,x称为A的对应于特征值的λλ特征向量。
  • 根据定义,立刻得到(AλI)x=0(A−λI)x=0,令关于λλ的多项式|AλI||A−λI|为0,方程|AλI|=0|A−λI|=0的根为AA的特征值;将根λ0λ0带入方程组(AλI)x=0(A−λI)x=0,求得到的非零解,即λ0λ0对应的特征向量。
  • nn阶矩阵A=(aij)A=(aij)的特征值为λ1,λ2,...λnλ1,λ2,...λn,则
    • λ1+λ2+...+λn=a11+a22++annλ1+λ2+...+λn=a11+a22+…+ann
    • λ1  λ2 λn=|A|λ1  λ2… λn=|A|
      • 矩阵A的主行列式的元素和,称作矩阵A的迹 
推论:
不同特征值对应的特征向量,线性无关。
实对称阵的特征值也是实数。
实对称阵不同的特征值的特征向量正交

2.3 合同变换

设A为n阶对称阵,则必有正交阵P,使得

 

2.4.正定阵

对于nn阶方阵AA,若任意nn阶向量xx,都有xTAx>0xTAx>0,则称AA是正定阵。
  • 由一阶推广而来:xax=ax2>0>a>0x⋅a⋅x=ax2>0−−>a>0
  • 若条件变成xTAx0xTAx≥0,则AA称作半正定矩阵。

正定阵的判定:
- 对称阵A为正定阵;
- A的特征值都为正;
- A的顺序主子式大于0;


2.5 漂白/白化whitening
暂定

. 矩阵求导

参考:https://blog.csdn.net/IOThouzhuo/article/details/50836787

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值