-
矩阵
SVD矩阵的乘法状态转移矩阵
状态转移矩阵 -
特征值和特征向量
对称阵
正交阵
正定阵数据白化 -
矩阵求导
向量对向量求导
标量对向量求导
标量对矩阵求导
一.矩阵
1.1 SVD
奇异值
分解(Singular Value Decomposition),假设A是一个m×n阶矩阵,则存在一个分解使得
Σ对角线上的元素称为矩阵A的奇异值;
U的第i列称为A的关于σi的左奇异向量;
V的第i列称为A的关于σi的右奇异向量。
通常将奇异值由大而小排列。如此Σ便能由M唯一确定了。(虽然U和V仍然不能确定)。而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。也就是说,我们也可以用前r大的奇异值来近似描述矩阵,那么SVD就起到一个特征选择的作用或者是降维的作用。
1.2 代数余子式
在一个n阶行列式A中,把(i,j)元素aij所在的第i 行和第j列划去后,留下的n-1阶方阵的行列式叫做元素aij的余子式,记作Mij
注意:行列式是数值,因此余子式和代数余子式也是数值;余子式可能也可能是负数。
1.3 伴随矩阵
注意:位于第j行i列
1.4 方阵的逆
当方阵的行列式不为0时,有:
如果不是方正,请参考矩阵的广义逆
1.5 范德蒙行列式
1.6 矩阵的乘法
AA为m∗sm∗s阶的矩阵,BB为s∗ns∗n阶的矩阵,那么,C=A∗BC=A∗B是m∗nm∗n阶的矩阵,其中
cij=∑k=1saijbkjcij=∑k=1saijbkj
1.7 矩阵和向量的乘法
- AA为m∗nm∗n阶的矩阵,XX为n∗1n∗1阶的矩阵,则AxAx 为m∗1m∗1的列向量,记y⃗=A⋅x⃗y→=A·x→
- 由于nn维列向量和n维空间的点一一对应,上式实际给出了从nn维空间的点到mm维空间的的线性变换。
- 旋转、平移
1.8 状态转移矩阵
数学解释:
设一个初始概率分布ππ(只是一个向量)
- 第n+1n+1代中处于第jj个阶层的概率为:π(Xn+1=j)=∑i=1kπ(Xn=i)⋅P(Xn+1=j|Xn=i)π(Xn+1=j)=∑i=1kπ(Xn=i)·P(Xn+1=j|Xn=i)
=>πn+1=πn⋅P=>πn+1=πn·P
原理:全概率公式:参考马尔科夫过程:https://blog.csdn.net/u010459100/article/details/51657955
1.9.矩阵的秩
- 在m∗nm∗n的矩阵A中,任取kk行kk列,不改变这k2k2个元素在AA中的次序,得到kk阶方阵,称为矩阵AA的k阶子式。
- 设在矩阵A中有一个
不等于
00的rr阶子式DD,且所有r+1r+1阶子式全等于00(如果存在的话),那么DD称为矩阵AA的最高阶非零子式,rr称为矩阵AA的秩,记作R(A)=rR(A)=r
- 如果一个矩阵|A|≠0|A|≠0那么可以说这个矩阵式满秩的
- n∗nn∗n的可逆矩阵,秩为n
矩阵的秩等于它的行列向量组
的秩
1.91 秩和线性方程组的解的关系
对于n元线性方程组Ax = b:
- 无解的充要条件是R(A)<R(A,b)R(A)<R(A,b)
- 唯一解的充要条件是R(A)=R(A,b)=nR(A)=R(A,b)=n
- Ax= 0的只有零解的充要条件是R(A)=nR(A)=n
- 无穷解的充要条件是R(A)=R(A,b)<nR(A)=R(A,b)<n
- Ax= b有解的充要条件是R(A)=R(A,b)R(A)=R(A,b)
- Ax= 0的非零解的充要条件是R(A)<n
1.10向量组
向量b能由向量组A:a1,a2,...,amA:a1,a2,...,am线性表示的充
要条件是矩阵A=(a1,a2,...am)A=(a1,a2,...am)的秩等于矩阵
B=(a1,a2,...am,b)B=(a1,a2,...am,b)的秩。
因为有解的条件是秩相等。
B=(a1,a2,...am,b)B=(a1,a2,...am,b) = (λ1a1,λ2a2,...λnam)(λ1a1,λ2a2,...λnam)
- 若向量组A与向量组B能相互线性表示,则称两个向量组等价。
1.11系数矩阵
参考:https://blog.csdn.net/IOThouzhuo/article/details/508367872.1正交阵
- 若nn阶矩阵A满足ATA=IATA=I,称A为正交矩阵,简称正交阵。
- AA是正交阵的充要条件:A的列(行)向量都是单位向量,且两两正交。
- AA是正交阵,X为向量,则Ax称作正交变换。
- 正交变换不改变向量长度。
2.2特征值和特征向量
A是n阶矩阵,若数λλ和n维非0列向量满足Ax=λxAx=λx,那么,数称为A的特征向值,x称为A的对应于特征值的λλ特征向量。
- 根据定义,立刻得到(A−λI)x=0(A−λI)x=0,令关于λλ的多项式|A−λI||A−λI|为0,方程|A−λI|=0|A−λI|=0的根为AA的特征值;将根λ0λ0带入方程组(A−λI)x=0(A−λI)x=0,求得到的非零解,即λ0λ0对应的特征向量。
- 设nn阶矩阵A=(aij)A=(aij)的特征值为λ1,λ2,...λnλ1,λ2,...λn,则
- λ1+λ2+...+λn=a11+a22+…+annλ1+λ2+...+λn=a11+a22+…+ann
- λ1 λ2… λn=|A|λ1 λ2… λn=|A|
- 矩阵A的主行列式的元素和,称作矩阵A的迹
推论:
不同特征值对应的特征向量,线性无关。
实对称阵的特征值也是实数。
实对称阵不同的特征值的特征向量正交
2.3 合同变换
设A为n阶对称阵,则必有正交阵P,使得
2.4.正定阵
对于nn阶方阵AA,若任意nn阶向量xx,都有xTAx>0xTAx>0,则称AA是正定阵。
- 由一阶推广而来:x⋅a⋅x=ax2>0−−>a>0x⋅a⋅x=ax2>0−−>a>0
- 若条件变成xTAx≥0xTAx≥0,则AA称作半正定矩阵。
正定阵的判定:
- 对称阵A为正定阵;
- A的特征值都为正;
- A的顺序主子式大于0;
2.5 漂白/白化whitening
暂定
三. 矩阵求导
参考:https://blog.csdn.net/IOThouzhuo/article/details/50836787