线性代数的本质——线性组合,张成空间和基

本文是对BiliBili上的一个系列视频的学习记录,非常推荐大家去B站上观看,记得三连,不要白嫖,链接:https://www.bilibili.com/video/av6731067/?p=2

上文中说到,向量坐标中的数字,可视为对基向量的拉伸或压缩,同样也说到,可以选择不同的基向量,构建完全合理的坐标系:

通过选择两个标量 ,分别用于缩放二者的其中之一,然后相加,我们会得到不同的结果,通过改变这两个标量,我们可以得到哪些二维向量?

由上图,可以明显知道,我们可以得到所有二维空间中的向量。当我们用数字描述向量时,都依赖于我们正在使用的基。

两个数乘向量的和称为这两个向量的线性组合:

                                    x_{1}V+x_{2}W=x_{1}\begin{bmatrix} v_{1}\\ v_{2} \end{bmatrix}+x_{2}\begin{bmatrix} w_{1}\\ w_{2} \end{bmatrix}=\begin{bmatrix} v_{1} &w_{1} \\ v_{2} &w_{2} \end{bmatrix}\begin{bmatrix} x_{1}\\ x_{2} \end{bmatrix}=\begin{bmatrix} x_{1}v_{1}+x_{2}w_{1}\\ x_{1}v_{2}+x_{2}w_{2} \end{bmatrix}

 在选择不同的向量,来作为新坐标系时,有三种情况:

一:一般情况

二:向量共线

 这两个初始向量所产生的向量,被限制在一条过原点的直线上

三:两个向量都是零向量

被限制在原点

 

所有可以表示为给定向量线性组合的向量的集合,被称为给定向量张成的空间(span)

对大部分二维向量来说,它们张成的空间是所有二维向量的集合,但当共线时,它们的张成空间就是,终点落在一条直线上的向量的集合。

如果我们用向量加法和向量数乘来描述张成空间,应该是:仅通过向量加法和向量数乘这两种基础运算,所能获得的所有可能向量的集合

因为向量加法和向量数乘都是线性运算,所以张成空间由可以描述为:向量的所有线性组合构成它们的张成空间

 

当我们考虑三维空间时,张成空间这个概念变得有趣了:

两个三维空间中的向量张成的空间,是三维空间中的一个过原点的平面,当我们再添加一个向量,如果这个向量与前两个向量共面,那么张成空间没有变化,如果不共面,张成空间就是整个三维空间。

从而,引出,基的严格定义:

向量空间的一组基是张成该空间的一个线性无关向量集

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫猫虫(——)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值