机器学习-线性模型数学推导和实现-Linear Model

本文深入探讨了线性模型的数学推导,包括简单的线性模型和加权线性模型,详细解释了如何在可逆和不可逆情况下求解权重。此外,还介绍了线性模型在实践中的应用,包括使用第三方库和自定义实现。
摘要由CSDN通过智能技术生成

1.线性模型的数学推导

1.1.简单的线性模型的数学推导

我们先考虑一个简单的线性模型,表达式如下:
f ( x ) = w 1 x + w 0 f(x) = w_1x+w_0 f(x)=w1x+w0
其中, w 1 , w 0 ∈ R 1 w_1,w_0\in\R^1 w1,w0R1,我们的损失函数定义为
L ( y ′ , y ∗ ) = 1 2 N ( y ′ − y ∗ ) 2 L(y',y^*)=\frac{1}{2N}(y'-y^*)^2 L(y,y)=2N1(yy)2
其中, y ′ y' y是模型预测的标签, y ∗ y^* y是真实的标签, N N N是样本的个数。那么我们的 E m p i r i c a l Empirical Empirical R i s k Risk Risk
min ⁡ f ∈ H R e m p ( f ) = min ⁡ w 0 , w 1 1 2 N ∑ i = 1 N ( f ( x i ) − y i ) = min ⁡ w 0 , w 1 1 2 N ∑ i = 1 N ( w 0 + w 1 x − y i ) \begin{aligned} \min_{f \in H}R_{emp}(f) &= \min_{w_0,w_1}\frac{1}{2N}\sum_{i=1}^N(f(x_i)-y_i) \\ &= \min_{w_0,w_1}\frac{1}{2N}\sum_{i=1}^N(w_0+w_1x-y_i) \end{aligned} fHminRemp(f)=w0,w1min2N1i=1N(f(xi)yi)=w0,w1min2N1i=1N(w0+w1xyi)
然后令 R e m p R_{emp} Remp w 0 和 w 1 w_0和w_1 w0w1的偏导等于0,得到
w ^ 1 = x y ‾ − x ˉ y ˉ ( x 2 ) ‾ − ( x ˉ ) 2 w ^ 0 = y ˉ − w ^ 1 x ˉ \begin{aligned} \hat{w}_1 &= \frac{\overline{xy} - \bar{x}\bar{y}} {\overline{(x^2)} - (\bar{x})^2} \\ \hat{w}_0 &= \bar{y} - \hat{w}_1\bar{x} \end{aligned} w^1w^0=(x2)(xˉ)2xyxˉyˉ=yˉw^1xˉ
求得 w 0 和 w 1 w_0和w_1 w0w1后,我们就可以带入 f ( x ) f(x) f(x)中,得到训练出来的模型为
f ^ ( x ) = w ^ 0 + w ^ 1 x \hat{f}(x) = \hat{w}_0 + \hat{w}_1x f^(x)=w^0+w^1x

1.2.一般化的推导

1.2.1.无加权线性模型的数学推导1

一般化的线性模型的表达式为
f ( x ) = ∑ j = 1 M w j ϕ j ( x ) = w 1 ϕ 1 ( x ) + w 2 ϕ 2 ( x ) + ⋯ + w M ϕ M ( x ) \begin{aligned} f(x) &= \sum_{j=1}^{M}w_j\phi_j(x) \\ &= w_1\phi_1(x)+w_2\phi_2(x)+\cdots+w_M\phi_M(x) \end{aligned} f(x)=j=1Mwjϕj(x)=w1ϕ1(x)+w2ϕ2(x)++wMϕM(x)
其中, M M M为数据集的特征的个数,也是 X _ t r a i n X\_train X_train矩阵的列数。 ϕ j ( x ) \phi_j(x) ϕj(x) b a s i s   f u n c t i o n basis\ function basis function。同样的,我们令损失函数为 m e a n   s q u a r e   l o s s   f u n c t i o n mean\ square\ loss\ function mean square loss function,那么我们的 E m p i r i c a l Empirical Empirical R i s k Risk Risk
min ⁡ f ∈ H R e m p ( f ) = min ⁡ w ∈ R M R e m p ( w ) = min ⁡ w ∈ R M 1 2 N ∑ i = 1 N [ f ( x i ) − y i ] 2 = min ⁡ w ∈ R M 1 2 N ∑ i = 1 N { ∑ j = 1 M w j ϕ j ( x i ) − y i } 2 = min ⁡ w ∈ R M 1 2 N ∑ i = 1 N { ( w 1 w 2 ⋯ w M ) ( ϕ 1 ( x i ) ϕ 2 ( x i ) ⋮ ϕ M ( x i ) ) − y i } 2 = min ⁡ w ∈ R M 1 2 N ∑ i = 1 N [ W T ϕ ( x i ) − y i ] 2 = min ⁡ w ∈ R M 1 2 N ( W T ϕ ( x 1 ) − y 1 W T ϕ ( x 2 ) − y 2 ⋯ W T ϕ ( x N ) − y N ) ( W T ϕ ( x 1 ) − y 1 W T ϕ ( x 2 ) − y 2 ⋮ W T ϕ ( x N ) − y N ) = min ⁡ w ∈ R M 1 2 N [ W T ( ϕ ( x 1 ) ϕ ( x 2 ) ⋯ ϕ ( x N ) ) − ( y 1 y 2 ⋯ y N ) ] ( W T ϕ ( x 1 ) − y 1 W T ϕ ( x 2 ) − y 2 ⋮ W T ϕ ( x N ) − y N ) = min ⁡ w ∈ R M 1 2 N ( W T Φ T − y T ) ( W T Φ T − y T ) T = min ⁡ w ∈ R M 1 2 N ( W T Φ T − y T ) ( Φ W − y ) = min ⁡ w ∈ R M 1 2 N ( W T Φ T Φ W − W T Φ T y − y T Φ W + y T y ) = min ⁡ w ∈ R M 1 2 N ( W T Φ T Φ W − 2 W T Φ T y + y T y ) \begin{aligned} \min_{f\in H}R_{emp}(f) &= \min_{w\in R^M}R_{emp}(w) \\ &= \min_{w\in R^M}\frac{1}{2N}\sum_{i=1}^{N}[f(x_i) - y_i]^2 \\ &= \min_{w\in R^M}\frac{1}{2N}\sum_{i=1}^{N}\Big \{\sum_{j=1}^{M}w_j\phi_j(x_i) -y_i \Big \}^2 \\ &= \min_{w\in R^M}\frac{1}{2N}\sum_{i=1}^{N}\bigg \{ \left( \begin{array}{ccc} w_1 & w_2 & \cdots & w_M \end{array} \right) \left( \begin{array}{c} \phi_1(x_i) \\ \phi_2(x_i) \\ \vdots \\ \phi_M(x_i) \end{array} \right) - y_i \bigg \}^2 \\ &= \min_{w\in R^M}\frac{1}{2N}\sum_{i=1}^{N}[ W^T\phi(x_i) - y_i]^2 \\ &= \min_{w\in R^M}\frac{1}{2N} \left( \begin{array}{ccc} W^T\phi(x_1) - y_1 & W^T\phi(x_2) - y_2 & \cdots & W^T\phi(x_N) - y_N \end{array} \right) \left( \begin{array}{c} W^T\phi(x_1) - y_1 \\ W^T\phi(x_2) - y_2 \\ \vdots \\ W^T\phi(x_N) - y_N \end{array} \right) \\ &= \min_{w\in R^M}\frac{1}{2N}\Big[W^T \left( \begin{array}{ccc} \phi(x_1)& \phi(x_2) & \cdots & \phi(x_N) \end{array} \right) - \left( \begin{array}{ccc} y_1& y_2 & \cdots & y_N \end{array} \right)\Big] \left( \begin{array}{c} W^T\phi(x_1) - y_1 \\ W^T\phi(x_2) - y_2 \\ \vdots \\ W^T\phi(x_N) - y_N \end{array} \right) \\ &= \min_{w\in R^M}\frac{1}{2N}(W^T\Phi^T - y^T) (W^T\Phi^T - y^T)^T \\ &= \min_{w\in R^M}\frac{1}{2N}(W^T\Phi^T - y^T) (\Phi W - y) \\ &= \min_{w\in R^M}\frac{1}{2N}(W^T\Phi^T\Phi W - W^T\Phi^Ty - y^T\Phi W + y^Ty) \\ &= \min_{w\in R^M}\frac{1}{2N}(W^T\Phi^T\Phi W - 2W^T\Phi^Ty + y^Ty) \end{aligned} fHminRemp(f)=wRMminRemp(w)=wRMmin2N1i=1N[f(xi)yi]2=wR

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值