文论瞎读:Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec

本文由微软和清华大学的研究者合作,将DeepWalk, LINE, PTE, 和 node2vec算法统一到矩阵分解的框架下,并提出了NetMF算法。研究发现,LINE可以视为DeepWalk在窗口大小为1时的特殊情况,PTE是对多个网络的联合矩阵的隐式分解。此外,还揭示了DeepWalk的隐式矩阵与图拉普拉斯矩阵之间的理论联系。" 112140608,10537839,Abaqus元素过度失真问题详解与解决方案,"['Abaqus', '有限元分析', '材料模型', '仿真计算', '数值模拟']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec

论文地址:https://arxiv.org/abs/1710.02971

简介:

本文由微软和清华合作,在2018年发表,文章将DeepWalk, LINE, PTE, and node2vec算法在MF框架下进行了统一,在此基础上提出了NetMF算法

背景:

各种network embedding models很流行,但是对这些方法背后的理论分析却很少,之前的一些工作有:

Omer Levy and Yoav Goldberg. 2014. Neural Word Embedding as Implicit Matrix Factorization. In NIPS. 2177–218

(解释了skip-gram中负采样是对word-content矩阵的隐式分解)

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. 2016. A latent variable model approach to pmi-based word embeddings. TACL 4 (2016), 385–399

Tatsunori B Hashimoto, David Alvarez-Melis, and Tommi S Jaakkola. 2016. Word embeddings as metric recovery in semantic spaces. TACL 4 (2016), 273–286

(解释了 the word embedding m

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值