考研数学~第一讲

张宇高数第一讲之高数预备知识

函数的概念与特性

函数的四种特性

1.有界性

指明区间

几何意义上–如在给定的区间上,函数 f ( x ) f(x) f(x)的图形能够被直线 y = − M y=-M y=M y = M y=M y=M完全包起来,则为有界

解析上–找到某个正数M,使得 ∣ f ( x ) ∣ ⩽ M |f(x)|\leqslant M f(x)M,则为有界

2.单调性

对任何 x 1 , x 2 ∈ D , x 1 ≠ x 2 x1,x2\in D,x1\neq x2 x1,x2D,x1=x2,则

f ( x ) f(x) f(x)是单调增函数 ⇔ ( x 1 − x 2 ) [ f ( x 1 ) − f ( x 2 ) ] > 0 ; \Leftrightarrow (x1-x2)[f(x1)-f(x2)]>0; (x1x2)[f(x1)f(x2)]>0;
f ( x ) f(x) f(x)是单调减函数 ⇔ ( x 1 − x 2 ) [ f ( x 1 ) − f ( x 2 ) ] < 0 ; \Leftrightarrow (x1-x2)[f(x1)-f(x2)]<0; (x1x2)[f(x1)f(x2)]<0;
f ( x ) f(x) f(x)是单调不增函数 ⇔ ( x 1 − x 2 ) [ f ( x 1 ) − f ( x 2 ) ] ⩽ 0 ; \Leftrightarrow (x1-x2)[f(x1)-f(x2)]\leqslant 0; (x1x2)[f(x1)f(x2)]0;

f ( x ) f(x) f(x)是单调不减函数 ⇔ ( x 1 − x 2 ) [ f ( x 1 ) − f ( x 2 ) ] ⩾ 0 ; \Leftrightarrow (x1-x2)[f(x1)-f(x2)]\geqslant0; (x1x2)[f(x1)f(x2)]0;

3.奇偶性

在这里插入图片描述

4.周期性

几何上–在周期函数的定义域内,相邻两个长度为T的区间上,函数的图形完全一样

解析上–任意 x ∈ D x\in D xD有$x\pm\in D,且f(x+T)=f(x),则称f(x) $为周期函数

5.重要结论

  • f ( x ) f(x) f(x)是可导的偶函数,则 f ′ ( x ) f'(x) f(x)是奇函数
  • f ( x ) f(x) f(x)是可导的奇函数,则 f ′ ( x ) f'(x) f(x)是偶函数
  • f ( x ) f(x) f(x)是可导的周期为T的周期函数,则 f ′ ( x ) f'(x) f(x)也是以周期为T的周期函数
  • 连续的奇函数的一切原函数都是偶函数
  • 连续的偶函数的原函数中仅有一个原函数是奇函数
  • 若连续函数 f ( x ) f(x) f(x)以T为周期且 ∫ 0 T f ( x ) d x = 0 \int_{0}^{T}f(x)dx=0 0Tf(x)dx=0,则 f ( x ) f(x) f(x)的一切原函数也以T为周期
  • f ( x ) f(x) f(x)在有限区间 ( a , b ) (a,b) (a,b)内可导且 f ′ ( x ) f'(x) f(x)有界,则 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内有界

函数的图像

(一)直角坐标系下的图像 f ( x , y ) = 0 f(x,y)=0 f(x,y)=0

1.幂函数

  • y = x μ ( μ 是 实 数 ) y=x^\mu(\mu是实数) y=xμ(μ)
    在这里插入图片描述

2.指数函数

  • y = a x ( a > 0 , a ≠ 1 ) y=a^x(a>0,a\neq1) y=ax(a>0,a=1)
    在这里插入图片描述

3.对数函数

  • y = l o g a x ( a > 0 , a ≠ 1 ) y=log_ax(a>0,a\neq1) y=logax(a>0,a=1)
    在这里插入图片描述

4.三角函数

  1. 正弦函数与余弦函数
    在这里插入图片描述

    有界性特殊函数值
    ∣ sin ⁡ x ∣ ⩽ 1 , ∣ cos ⁡ x ∣ ⩽ 1 \vert \sin x\vert \leqslant1,\vert \cos x \vert \leqslant1 sinx1,cosx1在这里插入图片描述
  2. 正切函数与余切函数

    tan ⁡ x = sin ⁡ x cos ⁡ x \tan x=\frac{\sin x}{\cos x} tanx=cosxsinx cot ⁡ x = cos ⁡ x sin ⁡ x = 1 tan ⁡ x \cot x=\frac{\cos x}{\sin x}=\frac{1}{\tan x} cotx=sinxcosx=tanx1

    在这里插入图片描述

    定义域奇偶性
    x ≠ k π + π 2 x\neq k\pi+\frac{\pi}{2} x=kπ+2π
    x ≠ k π x\neq k\pi x=kπ
    均为奇函数
    周期性特殊函数值
    π \pi π在这里插入图片描述在这里插入图片描述
  3. 正割函数与余割函数

    sec ⁡ x = 1 cos ⁡ x , csc ⁡ x = 1 sin ⁡ x \sec x=\frac{1}{\cos x},\csc x=\frac{1}{\sin x} secx=cosx1,cscx=sinx1
    在这里插入图片描述

5.反三角函数

  1. 反正弦函数与反余弦函数

    y = a r c s i n x y=arcsinx y=arcsinx y = a r c c o s x y=arccosx y=arccosx

在这里插入图片描述

定义域值域
[ − 1 , 1 ] [-1,1] [1,1] y = a r c s i n x → [ − π 2 , π 2 ] y=arcsinx\rightarrow[-\frac{\pi}{2},\frac{\pi}{2}] y=arcsinx[2π,2π]
y = a r c c o s x → [ 0 , π ] y=arccosx\rightarrow[0,\pi] y=arccosx[0,π]
奇偶性有界性
y = a r c s i n x → 奇 y=arcsinx\rightarrow奇 y=arcsinx − π 2 ⩽ a r c s i n x ⩽ π 2 -\frac{\pi}{2}\leqslant arcsinx\leqslant\frac{\pi}{2} 2πarcsinx2π
0 ⩽ a r c c o s x ⩽ π 0\leqslant arccosx \leqslant\pi 0arccosxπ
性质特殊函数值
a r c s i n x + a r c c o s x = π 2 ( − 1 ⩽ x ⩽ 1 ) arcsinx+arccosx=\frac{\pi}{2}(-1\leqslant x\leqslant 1) arcsinx+arccosx=2π(1x1)在这里插入图片描述
  1. 反正切函数与反余切函数

    y = a r c t a n x y=arctanx y=arctanx y = a r c c o t x y=arccotx y=arccotx

在这里插入图片描述

有界性性质
− π 2 < a r c t a n x < π 2 -\frac{\pi}{2}<arctanx<\frac{\pi}{2} 2π<arctanx<2π
0 < a r c c o t x < π 0<arccotx<\pi 0<arccotx<π
a r c t a n x + a r c c o t x = π 2 arctanx+arccotx=\frac{\pi}{2} arctanx+arccotx=2π
特殊函数值极限
在这里插入图片描述在这里插入图片描述

6.初等函数

由基本初等函数经有限次的四则运算,以及有限次的复合步骤所构成的并且可以由一个式子所表示的函数称为初等函数

幂指函数 u ( x ) v ( x ) = e v ( x ) ln ⁡ u ( x ) u(x)^{v(x)}=e^{v(x)\ln u(x)} u(x)v(x)=ev(x)lnu(x)也是初等函数

7.分段函数

  1. 经典形式

在这里插入图片描述

  1. 绝对值函数
    y = ∣ x ∣ = { x , x ⩾ 0 , − x , x < 0 y=|x|=\begin{cases} x,x\geqslant 0,\\ -x, x<0\end{cases} y=x={xx0,xx<0
    在这里插入图片描述

  2. 符号函数
    y = s g n x = { 1 , x > 0 , 0 , x = 0 , − 1 , x < 0 y=sgnx=\begin{cases} 1,x> 0,\\ 0, x=0,\\-1,x<0\end{cases} y=sgnx=1x>0,0x=0,1,x<0
    在这里插入图片描述

    对于任何实数 x x x,有 x = ∣ x ∣ s g n x x=|x|sgnx x=xsgnx

  3. 取整函数

    y = [ x ] y=[x] y=[x]的定义域为R,值域为Z

在这里插入图片描述

x − 1 < [ x ] ⩽ x x-1<[x]\leqslant x x1<[x]x

lim ⁡ x → 0 + [ x ] = 0 ; \lim_{x\rightarrow0^+}[x]=0; limx0+[x]=0;

图像变换

  1. 平移变换

    • 左右平移

      左移- y = f ( x + x 0 ) y=f(x+x_0) y=f(x+x0)

      右移- y = f ( x − x 0 ) y=f(x-x_0) y=f(xx0)

    在这里插入图片描述

    • 上下平移

      上移- y = f ( x ) + y 0 y=f(x)+y_0 y=f(x)+y0

      下移- y = f ( x ) − y 0 y=f(x)-y_0 y=f(x)y0

在这里插入图片描述

  1. 对称变换

    • 关于x轴对称 y = − f ( x ) y=-f(x) y=f(x)

在这里插入图片描述

  • 关于y轴对称 y = f ( − x ) y=f(-x) y=f(x)

在这里插入图片描述

  • 关于原点对称 y = − f ( − x ) y=-f(-x) y=f(x)

在这里插入图片描述

  • 关于直线 y = x y=x y=x对称 y = f − 1 ( x ) y=f^{-1}(x) y=f1(x)

在这里插入图片描述

  • 得到 y = ∣ f ( x ) ∣ y=|f(x)| y=f(x)的图像-保留 y = f ( x ) y=f(x) y=f(x)在x轴以及x轴上方的部分,把x轴下方的部分关于x轴对称到x轴上方,去掉x轴原来的下方部分

在这里插入图片描述

  • 得到 y = f ( ∣ x ∣ ) y=f(|x|) y=f(x)的图像-保留 y = f ( x ) y=f(x) y=f(x)在y轴及y轴右侧的部分,去掉y轴左侧的部分,再将y轴右侧图像对称到y轴左侧
    在这里插入图片描述
  1. 伸缩变换

    • 水平伸缩 y = f ( k x ) ( k > 1 ) y=f(kx)(k>1) y=f(kx)(k>1)
      在这里插入图片描述

    • 垂直伸缩 y = k f ( x ) ( k > 1 ) y=kf(x)(k>1) y=kf(x)(k>1)

在这里插入图片描述

(二)极坐标系下的图像

1.用描点法画常见的图像

1.心形线 r = a ( 1 − cos ⁡ θ ) ( a > 0 ) r=a(1-\cos\theta)(a>0) r=a(1cosθ)(a>0)

右侧以 2 π 2\pi 2π为周期,又 cos ⁡ ( 2 π − θ ) = cos ⁡ θ \cos(2\pi-\theta)=\cos\theta cos(2πθ)=cosθ,故只列出 0 − π 0-\pi 0π

θ \theta θ 0 0 0 π 6 \frac{\pi}{6} 6π π 4 \frac{\pi}{4} 4π π 3 \frac{\pi}{3} 3π π 2 \frac{\pi}{2} 2π 2 π 3 \frac{2\pi}{3} 32π 3 π 4 \frac{3\pi}{4} 43π 5 π 6 \frac{5\pi}{6} 65π π \pi π
r r r0 2 − 3 2 a \frac{2-\sqrt{3}}{2}a 223 a 2 − 2 2 a \frac{2-\sqrt{2}}{2}a 222 a 1 2 a \frac{1}{2}a 21a a a a 3 2 a \frac{3}{2}a 23a 2 + 2 2 a \frac{2+\sqrt{2}}{2}a 22+2 a 2 + 3 2 a \frac{2+\sqrt{3}}{2}a 22+3 a 2 a 2a 2a

在这里插入图片描述

2.玫瑰线 r = a sin ⁡ 3 θ r=a\sin3\theta r=asin3θ

右侧以 2 π 3 \frac{2\pi}{3} 32π为周期

θ \theta θ0 π 12 \frac{\pi}{12} 12π π 6 \frac{\pi}{6} 6π π 4 \frac{\pi}{4} 4π π 3 \frac{\pi}{3} 3π 5 π 12 \frac{5\pi}{12} 125π π 2 \frac{\pi}{2} 2π 7 π 12 \frac{7\pi}{12} 127π 2 π 3 \frac{2\pi}{3} 32π
r r r0 2 2 a \frac{\sqrt{2}}{2}a 22 a a a a 2 2 a \frac{\sqrt{2}}{2}a 22 a0 − 2 2 a -\frac{\sqrt{2}}{2}a 22 a − a -a a − 2 2 a -\frac{\sqrt{2}}{2}a 22 a0

在这里插入图片描述

三叶玫瑰线由三个弧段组成

0 ⩽ θ ⩽ 2 π 3 0\leqslant\theta \leqslant \frac{2\pi}{3} 0θ32π范围内,得到弧段1,2,3,4

2 π 3 ⩽ θ ⩽ 4 π 3 \frac{2\pi}{3}\leqslant\theta \leqslant \frac{4\pi}{3} 32πθ34π范围内,得到弧段5,6,1,2

4 π 3 ⩽ θ ⩽ 2 π \frac{4\pi}{3}\leqslant\theta \leqslant 2\pi 34πθ2π范围内,得到弧段3,4,5,6

3.阿基米德螺线 r = a θ r=a\theta r=aθ

θ \theta θ由0增大时, r r r亦逐渐增大,这曲线即阿基米德螺线

在这里插入图片描述

4.伯努利双扭线

设定AB的长度为 2 a 2a 2a,动点M满足 M A × M B = a 2 MA\times MB=a^2 MA×MB=a2,则M的轨迹称为双扭线

取AB为x轴,中点为原点,那么A,B的坐标分别为 ( − a , 0 ) , ( a , 0 ) , (-a,0),(a,0), (a,0),(a,0) M ( x , y ) M(x,y) M(x,y)

则直角坐标系下表达式: ( x + a ) 2 + y 2 × ( x − a ) 2 + y 2 = a 2 \sqrt{(x+a)^2+y^2}\times\sqrt{(x-a)^2+y^2}=a^2 (x+a)2+y2 ×(xa)2+y2 =a2

整理得 ( x 2 + y 2 ) 2 = 2 a 2 ( x 2 − y 2 ) (x^2+y^2)^2=2a^2(x^2-y^2) (x2+y2)2=2a2(x2y2)

极坐标表达式: r 2 = 2 a 2 cos ⁡ 2 θ r^2=2a^2\cos2\theta r2=2a2cos2θ

在极坐标系中,双扭线得极坐标方程常常写成 r 2 = a 2 cos ⁡ θ r^2=a^2\cos\theta r2=a2cosθ或者 r 2 = a 2 sin ⁡ 2 θ r^2=a^2\sin2\theta r2=a2sin2θ

在这里插入图片描述

r 2 = a 2 sin ⁡ 2 θ ( a > 0 ) r^2=a^2\sin2\theta(a>0) r2=a2sin2θ(a>0)的图像,由 r = a sin ⁡ 2 θ r=a\sqrt{\sin2\theta} r=asin2θ 可得 θ \theta θ的取值范围是 [ 0 , π 2 ] ∪ [ π , 3 π 2 ] [0,\frac{\pi}{2}]\cup[\pi,\frac{3\pi}{2}] [0,2π][π,23π]

在这里插入图片描述

2.用直角系观点画极坐标系下的图像

1.心形线 r = 2 ( 1 + cos ⁡ θ ) r=2(1+\cos\theta) r=2(1+cosθ)

在这里插入图片描述

2.阿基米德螺旋线 r = a θ r=a\theta r=aθ

在这里插入图片描述

(三)参数法–参数方程

( { x = x ( t ) , y = y ( t ) ) (\begin{cases} x=x(t),\\ y=y(t) \end{cases}) ({x=x(t),y=y(t))

(1)摆线

当一个圆沿一条定直线作无滑动的滚动时,动圆圆周上一个定点的轨迹叫做摆线(设自行车外胎上粘了一个红色的油漆,这个红点就在平面上形成了一条轨迹,这个轨迹就是摆线)如下图所示:

在这里插入图片描述

由图可得定点A(x,y)的运动轨迹:

y = P A = ∣ Q C ′ ∣ − ∣ D C ′ ∣ = r − r cos ⁡ t y=PA=|QC'|-|DC'|=r-r\cos t y=PA=QCDC=rrcost

x = O P = ∣ O Q ∣ − ∣ P Q ∣ = 圆 弧 Q A 的 长 度 − ∣ A C ′ ∣ sin ⁡ t = r t − r sin ⁡ t x=OP=|OQ|-|PQ|=圆弧QA的长度-|AC'|\sin t=rt-r\sin t x=OP=OQPQ=QAACsint=rtrsint

因此,所求定点A的运动轨迹的参数方程为
{ x = r ( t − s i n t ) , y = r ( 1 − c o s t ) \begin{cases} x=r(t-sint),\\ y=r(1-cost) \end{cases} {x=r(tsint),y=r(1cost)

(2)星形线

如下图a所示,一个小圆J在一个固定的大圆K内部做纯滚动,如果大圆半径r是小圆半径的4倍,那么小圆圆周上任一点M的轨迹称为星形线如图b所示

在这里插入图片描述

此轨迹方程推导过程比较复杂,其参数方程表达式如下:
{ x = r cos ⁡ 3 t , y = r sin ⁡ 3 t \begin{cases} x=r\cos^3 t,\\ y=r\sin^3t \end{cases} {x=rcos3t,y=rsin3t
若消去t,可得 x 2 3 + y 2 3 = r 2 3 x^{\frac{2}{3}}+y^{\frac{2}{3}}=r^{\frac{2}{3}} x32+y32=r32为直角坐标方程

常用基础知识

1.数列

1.等差数列

  • 通项公式: a n = a 1 + ( n − 1 ) d a_n=a_1+(n-1)d an=a1+(n1)d
  • 前n项和: S n = n 2 [ 2 a 1 + ( n − 1 ) d ] = n 2 ( a 1 + a n ) S_n=\frac{n}{2}[2a_1+(n-1)d]=\frac{n}{2}(a_1+a_n) Sn=2n[2a1+(n1)d]=2n(a1+an)

2.等比数列

  • 通项公式: a n = a 1 r n − 1 a_n=a_1r^{n-1} an=a1rn1
  • 前n项和: S n = { n a 1 , r = 1 , a 1 ( 1 − r n ) 1 − r , r ≠ 1 S_n=\begin{cases} na_1,r=1,\\ \frac{a_1(1-r^n)}{1-r},r\neq 1\end{cases} Sn={na1,r=1,1ra1(1rn),r=1
  • 常用: 1 + r + r 2 + . . . + r n − 1 = 1 − r n 1 − r 1+r+r^2+...+r^{n-1}=\frac{1-r^n}{1-r} 1+r+r2+...+rn1=1r1rn
  • 常用:当r=2时, S n = a 1 ( 2 n − 1 ) S_n=a_1(2^n-1) Sn=a1(2n1)

3.一些常见的数列前n项和

  • ∑ k = 1 n k = 1 + 2 + 3 + . . . + n = ( n + 1 ) n 2 \sum_{k=1}^n k=1+2+3+...+n=\frac{(n+1)n}{2} k=1nk=1+2+3+...+n=2(n+1)n

  • ∑ k = 1 n k 2 = 1 2 + 2 2 + 3 2 + . . . + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum_k=1^n k^2=1^2+2^2+3^2+...+n^2=\frac{n(n+1)(2n+1)}{6} k=1nk2=12+22+32+...+n2=6n(n+1)(2n+1)

  • ∑ k = 1 n 1 k ( k + 1 ) = 1 1 × 2 + 1 2 × 3 + . . . + 1 n ( n + 1 ) = n n + 1 \sum_k=1^n \frac{1}{k(k+1)}=\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{n(n+1)}=\frac{n}{n+1} k=1nk(k+1)1=1×21+2×31+...+n(n+1)1=n+1n

2.三角函数

1.三角函数基本关系

csc ⁡ α = 1 sin ⁡ α , sec ⁡ α = 1 cos ⁡ α , cot ⁡ α = 1 tan ⁡ α , tan ⁡ α = sin ⁡ α cos ⁡ α , cot ⁡ α = cos ⁡ α sin ⁡ α \csc \alpha=\frac{1}{\sin \alpha},\sec \alpha=\frac{1}{\cos \alpha},\cot \alpha=\frac{1}{\tan \alpha},\tan \alpha=\frac{\sin \alpha}{\cos \alpha},\cot \alpha=\frac{\cos \alpha}{\sin \alpha} cscα=sinα1,secα=cosα1,cotα=tanα1,tanα=cosαsinα,cotα=sinαcosα

sin ⁡ 2 α + cos ⁡ 2 α = 1 , 1 + tan ⁡ 2 α = sec ⁡ 2 α , 1 + cot ⁡ 2 α = csc ⁡ 2 α \sin^2\alpha+\cos^2\alpha=1,1+\tan^2\alpha=\sec^2\alpha,1+\cot^2\alpha=\csc^2\alpha sin2α+cos2α=1,1+tan2α=sec2α,1+cot2α=csc2α

2.诱导公式

奇变偶不变,符号看象限
在这里插入图片描述
三角函数在四个象限中的符号如下所示:
在这里插入图片描述

特殊三角函数值如下表所示:
在这里插入图片描述

3.重要公式

  • 倍角公式
    sin ⁡ 2 α = 2 sin ⁡ α cos ⁡ α , cos ⁡ 2 α = cos ⁡ 2 α − sin ⁡ 2 α = 1 − 2 sin ⁡ 2 α = 2 cos ⁡ 2 α − 1 , \sin 2\alpha=2\sin\alpha\cos\alpha,\cos2\alpha=\cos^2\alpha-\sin^2\alpha=1-2\sin^2\alpha=2\cos^2\alpha-1, sin2α=2sinαcosα,cos2α=cos2αsin2α=12sin2α=2cos2α1,

    sin ⁡ 3 α = − 4 sin ⁡ 3 α + 3 sin ⁡ α , c o s 3 α = 4 cos ⁡ 3 α − 3 cos ⁡ α \sin 3\alpha=-4\sin^3\alpha+3\sin\alpha,cos3\alpha=4\cos^3\alpha-3\cos\alpha sin3α=4sin3α+3sinα,cos3α=4cos3α3cosα

    tan ⁡ 2 α = 2 tan ⁡ α 1 − t a n 2 α , cot ⁡ 2 α = cot ⁡ 2 α − 1 2 cot ⁡ α \tan2\alpha=\frac{2\tan\alpha}{1-tan^2\alpha},\cot2\alpha=\frac{\cot^2\alpha-1}{2\cot\alpha} tan2α=1tan2α2tanα,cot2α=2cotαcot2α1

  • 半角公式

在这里插入图片描述

  • 和差公式
    在这里插入图片描述
  • 积化和差与和差化积公式
    在这里插入图片描述在这里插入图片描述
  • 万能公式
    在这里插入图片描述

3.指数运算法则

在这里插入图片描述

其中a,b是正实数, α , β \alpha,\beta α,β是任意实数

4.对数运算法则

在这里插入图片描述

5.一元二次方程

在这里插入图片描述

6.因式分解公式

在这里插入图片描述

7.阶乘与双阶乘

  • n ! = 1 × 2 × 3... × n n!=1\times 2\times 3...\times n n!=1×2×3...×n,规定 0 ! = 1 0!=1 0!=1
  • ( 2 n ) ! ! = 2 × 4 × 6 × . . . × ( 2 n ) = 2 n × n ! (2n)!!=2\times 4\times 6\times ...\times(2n)=2^n\times n! (2n)!!=2×4×6×...×(2n)=2n×n!
  • ( 2 n − 1 ) ! ! = 1 × 3 × 5 × . . . × ( 2 n − 1 ) (2n-1)!!=1\times 3\times 5\times...\times(2n-1) (2n1)!!=1×3×5×...×(2n1)

8.常用不等式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值