高数之数列极限

[张宇高数第二讲之数列极限]:

数列极限定义

ϵ − N \epsilon-N ϵN语言

l i m n → ∞ x n = a ⇔ ∀ ϵ > 0 , ∃ N > 0 , lim_{n\rightarrow\infty}x_n=a\Leftrightarrow\forall \epsilon>0,\exists N>0, limnxn=aϵ>0,N>0, n > N n>N n>N时,恒有 ∣ x n − a ∣ < ϵ \vert x_n-a\vert<\epsilon xna<ϵ

x n {x_n} xn为一数列,若存在常数 a a a,对于任意的 ϵ > 0 \epsilon>0 ϵ>0(无论它多么小),总存在正整数N,是的 n > N n>N n>N时, ∣ x n − a ∣ < ϵ \vert x_n-a\vert<\epsilon xna<ϵ恒成立,则称数 a a a是数列 x n {x_n} xn的极限,或者称数列 x n {x_n} xn收敛于 a a a,记为
l i m n → ∞ x n = a 或 者 x n → a ( n → ∞ ) lim_{n\rightarrow\infty}x_n=a或者 x_n\rightarrow a(n\rightarrow\infty) limnxn=axna(n)
极限是过程

定义法求极限三部曲

  • 先写距离 ∣ X n − a ∣ < ϵ ( ∀ ϵ > 0 ) \vert X_n-a \vert <\epsilon (\forall \epsilon>0) Xna<ϵ(ϵ>0)
  • 反解出n n > g ( ϵ ) n>g(\epsilon) n>g(ϵ)
  • N N N使得 N = [ g ( ϵ ) ] + 1 N=[g(\epsilon)]+1 N=[g(ϵ)]+1,向下取整加1

则总存在 N N N,使得 n > N n>N n>N时, ∣ x n − a ∣ < ϵ \vert x_n-a\vert<\epsilon xna<ϵ恒成立,得证

数列与子列的关系-“判断数列是否发散”

子列定义:从数列中选取无穷多项,并按照原来的先后顺序组成的新的数列,称为原数列的子列,常见奇数列和偶数列组成原数列

  • 定理:若数 a n {a_n} an收敛,则任何子列 a n k {a_{n_k}} ank也收敛 l i m k → ∞ a n k = l i m n → ∞ a n lim_{k\rightarrow \infty}a_{n_k}=lim_{n\rightarrow \infty}a_n limkank=limnan

    判断数列是否发散:

  1. 如果能够找到一个子列发散,则原数列一定发散
  2. 如果能找到两个收敛的子列,但它们收敛于不同极限,则原数列也一定发散
  • 推论: l i m k → ∞ a 2 k = a 且 l i m k → ∞ a 2 k − 1 = a ⇔ l i m n → ∞ a n = a lim_{k\rightarrow \infty}a_{2k}=a且lim_{k\rightarrow \infty}a_{2k-1}=a \Leftrightarrow lim_{n\rightarrow \infty}a_n=a limka2k=alimka2k1=alimnan=a

    (充要条件)即偶子列与奇子列均收敛于同一个极限,则原数列也收敛于该极限

数列极限性质

1.唯一性

给出数列 x n {x_n} xn,,若 l i m n → ∞ x n = a lim_{n \rightarrow \infty}x_n=a limnxn=a存在,则a是唯一的

2.有界性

若数列 x n {x_n} xn极限存在,则数列 x n {x_n} xn有界

3.保号性

设数列 x n {x_n} xn存在极限 a a a,且 a > 0 ( 或 a < 0 ) a>0(或a<0) a>0(a<0),则存在正整数N,当 n > N n>N n>N时,有 a n > 0 ( 或 a n < 0 ) a_n>0(或a_n<0) an>0(an<0)

脱帽法(极限大于(小于)0,则通项大于(小于)0)
l i m n → ∞ a n = a ( a > 0 或 a < 0 ) ⇒ a n > 0 或 a n < 0 lim_{n \rightarrow \infty} a_n=a(a>0或a<0) \Rightarrow a_n>0或a_n<0 limnan=a(a>0a<0)an>0an<0
戴帽法:(通项非负,则极限非负,)
( a ⩽ 0 或 a ⩾ 0 ) 且 l i m n → ∞ a n = a ⇒ a ⩽ 0 或 a ⩾ 0 (a \leqslant 0 或 a \geqslant 0) 且lim_{n\rightarrow \infty}a_n=a \Rightarrow a \leqslant 0 或 a \geqslant 0 (a0a0)limnan=aa0a0

极限运算法则

前提: l i m n → ∞ x n = a , l i m n → ∞ y n = b lim_{n \rightarrow \infty}x_n=a ,lim_{n\rightarrow \infty}y_n=b limnxn=a,limnyn=b即极限存在

则:

  • l i m n → ∞ x n ± l i m n → ∞ y n = a ± b lim_{n\rightarrow \infty}x_n \pm lim_{n\rightarrow \infty}y_n=a \pm b limnxn±limnyn=a±b
  • l i m n → ∞ x n y n = a b lim_{n\rightarrow \infty}x_ny_n=ab limnxnyn=ab
  • b ≠ , y n ≠ 0 b \neq ,y_n \neq 0 b=,yn=0,则 l i m n → ∞ x n y n = a b lim_{n\rightarrow \infty}\frac{x_n}{y_n}=\frac{a}{b} limnynxn=ba

夹逼准则

若数列 x n , y n , z n {x_n},{y_n},{z_n} xn,yn,zn满足以下的条件:

  1. y n ⩽ x n ⩽ z n ( n = 1 , 2 , 3... ) y_n \leqslant x_n \leqslant z_n(n=1,2,3...) ynxnzn(n=1,2,3...)(此处的有无等号均可)
  2. l i m n → ∞ y n = l i m n → ∞ z n = a lim_{n\rightarrow \infty}y_n=lim_{n\rightarrow \infty}z_n=a limnyn=limnzn=a

单调有界准则

单调有界数列必有极限

即若数列 x n {x_n} xn单调增加(减少)且有上界(下界),则 l i m n → ∞ x n lim_{n\rightarrow \infty}x_n limnxn存在

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值