三角函数与反三角函数的拓展

本文详细介绍了三角函数,包括正弦、余弦、正切、余割、正割和余切,及其定义域、值域、渐近线、有界性、奇偶性、周期性和单调性。同时,讨论了反三角函数与三角函数的关系,强调了反三角函数的值域特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

三角函数与反三角函数的拓展

三角函数

三角函数分为:
: sin ⁡ x , cos ⁡ x , tan ⁡ x csc ⁡ x , sec ⁡ x , cot ⁡ x \sin x,\cos x,\tan x\\\csc x,\sec x,\cot x sinx,cosx,tanxcscx,secx,cotx
它们分别叫做正弦、余弦、正切,余割、正割、余切。
三角函数的定义出自三角形某两边之比(单位圆也可给出定义),如图1-1:
在这里插入图片描述

csc x,余割

  • csc ⁡ x = 1 sin ⁡ x \csc x=\frac{1}{\sin x} cscx=sinx1

图像:在这里插入图片描述

  • 定义域:, { x ∣ x ≠ k π , k ∈ Z } \{x|x≠kπ,k∈Z\} { xx=kπkZ}

  • 值域: { y ∣ y ≤ − 1 或 y ≥ 1 } \{y|y≤-1或y≥1\} { yy1y1}

  • 渐近线:x=kπ ,k∈Z

  • 有界性: |cscx|≥1,显然无界

  • 奇偶性:奇函数

  • 周期性:2π

  • 单调性:
    增 区 间 : [ 2 k π + π 2 , 2 k π + 3 π 2 ] 减 区 间 : [ 2 k π − π 2 , 2 k π + π 2 ] 其 中 , k ∈ Z 增区间:[2k\pi+\frac{\pi}{2},2k\pi+\frac{3\pi}{2}] \\ 减区间:[2k\pi-\frac{\pi}{2},2k\pi+\frac{\pi}{2}]\\其中,k\in Z :[2kπ+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值