1.基本思想
快速排序(Quick Sort)是一种经典的分治策略排序算法,其基本思想是通过将一个数组分成两个子数组,其中一个子数组的所有元素都小于另一个子数组的元素,然后递归地对这两个子数组进行排序,最终将它们合并在一起以获得完全排序的数组。快速排序的平均时间复杂度为O(n log n),其中n是要排序的元素数量。
2.基本步骤
-
步骤1:选择基准元素(Pivot)
首先,从数组中选择一个基准元素。通常,可以选择数组的最后一个元素,或者随机选择一个元素。
-
步骤2:分区(Partition)
将数组中的元素分为两个子数组,一个小于基准元素,另一个大于基准元素。分区的过程可以使用以下方式进行:
- 初始化两个指针,一个指向数组的起始位置(左指针),另一个指向数组的结束位置(右指针)。
- 移动左指针,直到找到一个大于或等于基准元素的元素。
- 移动右指针,直到找到一个小于或等于基准元素的元素。
- 如果左指针仍然在右指针的左侧,交换这两个元素,然后继续移动指针。
- 当左指针不再小于右指针时,停止分区过程。此时,左指针的位置就是基准元素的最终位置。
-
步骤3:递归排序子数组
递归地对基准元素左侧的子数组和右侧的子数组进行快速排序。这意味着重复执行步骤1和步骤2。
-
步骤4:合并结果
最终,将排序好的子数组合并在一起,得到完全排序的数组。通常,不需要实际合并操作,因为排序是在原地进行的。
这个过程不断地将问题分解成更小的子问题,然后合并子问题的解以获得最终的排序结果。快速排序的关键在于选择合适的基准元素以及高效的分区过程。
3.C++代码
#include <iostream>
#include <vector>
using namespace std;
// 函数用于分区(Partition)操作
int partition(vector<int>& arr, int low, int high) {
int pivot = arr[high]; // 选择最后一个元素作为基准元素
int i = (low - 1); // 初始化较小元素的索引
for (int j = low; j <= high - 1; j++) {
// 如果当前元素小于等于基准元素,则交换arr[i]和arr[j]
if (arr[j] <= pivot) {
i++; // 较小元素的索引增加
swap(arr[i], arr[j]);
}
}
// 将基准元素(pivot)放置到正确的位置,即将其放置到所有较小元素的右侧
swap(arr[i + 1], arr[high]);
return (i + 1); // 返回基准元素的索引
}
// 快速排序递归函数
void quickSort(vector<int>& arr, int low, int high) {
if (low < high) {
// 找到基准元素的索引
int pivotIndex = partition(arr, low, high);
// 递归地对基准元素左侧和右侧的子数组进行排序
quickSort(arr, low, pivotIndex - 1);
quickSort(arr, pivotIndex + 1, high);
}
}
// 快速排序函数的包装
void quickSort(vector<int>& arr) {
int n = arr.size();
quickSort(arr, 0, n - 1);
}
int main() {
vector<int> arr = {2,1,7,6,5,4,8,3}; //原数组
cout << "原始数组:";
for (int num : arr) {
cout << num << " ";
}
cout << endl;
quickSort(arr);
cout << "排序后的数组:";
for (int num : arr) {
cout << num << " ";
}
cout << endl;
return 0;
}