生成对抗网络的训练技巧

①使用tanh作为生成器最后一层的激活,而不用sigmoid;

②使用正太分布对潜在空间中的点进行激活,而不用均匀分布;

③稀疏的梯度会阻碍GAN的训练,而最大池化运算和relu激活可能会导致梯度稀疏,所以使用带步长卷积取代池化,使用leakyrelu取代relu;

④生成的图像中可能会出现伪影,这是由于生成器中像素空间的不均匀覆盖导致的,所以卷积时使用的内核大小要能被步幅大小整除;

⑤Label平滑,也就是说,如果有两个目标label:Real=1 和 Fake=0,那么对于每个新样本,如果是real,那么把label替换为0.7~1.2之间的随机值;如果样本是fake,那么把label替换为0.0~0.3之间的随机值;还可以在训练判别器时向标签中添加噪声;

⑥适当采用批标准化和梯度正则化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值