①使用tanh作为生成器最后一层的激活,而不用sigmoid;
②使用正太分布对潜在空间中的点进行激活,而不用均匀分布;
③稀疏的梯度会阻碍GAN的训练,而最大池化运算和relu激活可能会导致梯度稀疏,所以使用带步长卷积取代池化,使用leakyrelu取代relu;
④生成的图像中可能会出现伪影,这是由于生成器中像素空间的不均匀覆盖导致的,所以卷积时使用的内核大小要能被步幅大小整除;
⑤Label平滑,也就是说,如果有两个目标label:Real=1 和 Fake=0,那么对于每个新样本,如果是real,那么把label替换为0.7~1.2之间的随机值;如果样本是fake,那么把label替换为0.0~0.3之间的随机值;还可以在训练判别器时向标签中添加噪声;
⑥适当采用批标准化和梯度正则化。