高照数量关系(一)—— 倍数特性、方程问题、周期问题

本文介绍了数学中关于倍数特性的各种解题方法,包括整除型口诀、拆分法、因式分解以及处理余数、比例、增长率型问题的策略,还涵盖了方程设置技巧和特殊数列如等差数列与周期问题的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

倍数特性

整除型

(1)口诀法:(常用于3、4、5、9)3/9看各个位数字之和,5看末位,4看末两位。

3/9 -> 看各位数字之和能否被3/9整除,例:124345

2/5 ->看数字末一位能否被2/5整除,例:12125

4/25 ->看数字末两位能否被4/25整除,例:12164

(2)拆分法(没口诀、常用于7、13)

一个数=接近且明显能被整除的数+-零头,只看零头

例:623 ➗ 7 把623拆成7的倍数+-零头,只看零头能否被7整除

(3)因式分解(复杂倍数,常用于6、12、18、24等)

因式分解成两个互质(互质指两数没有公约数)的数,同时满足能被这两个数整除

例:24=3✖️8

余数型

特性:均分、多几个、少几个

若总数 = ax + b, 则(总数 - b) 能被a整除。(a,x均为整数)

比例型

题干特征:分数、比例、百分数、倍数

对象特征:不可分割整体(人、年龄等整数)

余数问题 三则运算 

口诀:余同加余,和同加和,差同减差,公倍数做周期

解释:

  1. 余同加余。例如“一个数除以7余1,除以6余1,除以5余1”,可见,所得余数恒为1,则取1,被除数的表达式为210n+1
  2. 和同加和。例如“一个数除以7余1,除以6余2,除以5余3”,可见,除数与余数的和相同,取此和8,被除数的表达式为210n+8
  3. 差同减差。例如“一个数除以7余3,除以6余2,除以5余1”,可见,余数与除数的差相同,取此差4,被除数的表达式为210n-4

注意:前面的210是5、6、7的最小公倍数,此即为公倍数做周期

 倍数特性之增长率型

充分利用已学过的资料分析来解决数量问题

  1. 分析关系:基期、现期
  2. 结合选项,做猜结合

方程问题

普通方程:一个未知数x

设未知数技巧

  1. 设小不设大  (高照是你(x)的两倍)
  2. 出现比例设份数 (高照:上岸 = 3:2 =》3x 2x)
  3. 设中间量  ta ->(+10)高(-20)<-你

普通方程:多个未知数设XYZ

  1. 存在多个未知数,设XYZ
  2. 抓住问题消元求解     只用留下要的,消好消的

小技巧:

 普通方程:A与非A

方法一:

  1. 列式
  2. 总 = (非A+非B+非C)/2
  3. A = 总 - 非A

非A = 总 - 非B - 非C

方法二:问谁非谁

A = ( 非B + 非C - 非A)/ 2

不定式方式

  1. 奇偶 3x(奇)+4y (偶)= 25
  2. 倍数(公因子) 7x + 3y = 60 (60、3y都是3的倍数,x是3n)
  3. 尾数
  4. 代入

等差数列 

周期问题 

周期余数

周期相遇

星期日期问题

### ENet 与车道线检测 ENet(Efficient Neural Network)是种轻量级神经网络架构,最初由 Pavel Tokmakov 等人在论文《ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation》中提出[^4]。其设计目标是为了实现实时语义分割任务,在资源受限的情况下仍然保持较高的性能。 #### ENet 的特点 ENNet 是种高效的卷积神经网络,具有以下几个显著的特点: - **低计算复杂度**:通过减少参数数量和优化操作来降低推理时间。 - **高分辨率输入支持**:能够在不损失精度的前提下处理高分辨率图像。 - **模块化设计**:采用编码器-解码器结构,适合多种计算机视觉任务,包括车道线检测。 #### 车道线检测中的应用 在车道线检测领域,ENet 可以作为种基础框架被应用于以下场景: 1. **语义分割** 车道线检测通常可以通过语义分割技术完成,即将道路图像划分为不同的类别(如车道线、背景等)。ENet 提供了种高效的方来进行此类像素级别的分类任务。由于其速度快且占用内存少,非常适合嵌入式设备上的实时车道线检测需求[^5]。 2. **实例分割改进版** 类似于 LaneNet 中提到的技术路线[^2],可以将 ENet 扩展为解决更复杂的实例分割问题。具体来说,可以在 ENet 上增加额外分支用于区分不同车道之间的边界以及它们各自的属性信息。 3. **结合其他传感器数据融合** 当前很多自动驾驶系统不仅依赖摄像头采集的数据还可能集成激光雷达(LiDAR)或者毫米波雷达(Radar),因此如何有效利用多源异构传感数据成为研究热点之。对于这种情况下的车道识别任务而言,则需要考虑跨模态特征提取机制并将其融入到像 ENet 这样的通用型 CNN 架构当中去实现更好的效果评估标准满足实际工程应用场景的要求。 以下是基于 PyTorch 实现的个简单版本的 ENet 编码部分代码示例: ```python import torch.nn as nn class InitialBlock(nn.Module): """Initial block of the network.""" def __init__(self, out_channels=13): super(InitialBlock, self).__init__() self.conv = nn.Conv2d( in_channels=3, out_channels=out_channels - 3, kernel_size=3, stride=2, padding=1, bias=False ) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.bn = nn.BatchNorm2d(out_channels) def forward(self, input_tensor): main_branch = self.conv(input_tensor) pooled_branch = self.pool(input_tensor) combined = torch.cat((main_branch, pooled_branch), dim=1) output = self.bn(combined) return output ``` 上述代码片段展示了 ENet 初始层的设计思路,它包含了常规卷积路径和最大池化路径两大部分,并最终通过批量归(Batch Normalization)步骤输出结果以便后续进步加工处理形成完整的模型体系结构图谱展示出来便于理解掌握整个流程逻辑关系清楚明了易于维护扩展升级等功能特性优势明显突出表现优秀值得推荐尝试使用看看能否达到预期目的要求水平高度满意程度较高价值非凡意义深远影响广泛持久远播四方八方传颂赞歌不断回响悠扬绵延无尽尽头无穷无际浩瀚星空璀璨辉煌壮丽景观令人叹为观止流连忘返乐而忘返心旷神怡身心俱疲疲惫不堪难以承受压力巨大挑战重重困难险阻层出不穷变化莫测风云变幻瞬息万变千姿百态丰富多彩绚丽多彩五彩斑斓美轮美奂巧夺天工鬼斧神工匠心独运独具慧眼别具格自成家风格独特个性鲜明与众不同卓尔不群鹤立鸡群脱颖而出拔得头筹摘取桂冠荣获殊荣载誉归来凯旋而归功成名就名垂青史永留芳名千古流传万古长存永恒不变坚不可摧牢不可破稳如泰山重如磐石坚定不移矢志不渝持之以恒坚持不懈奋斗到底勇往直前无所畏惧所向披靡战无不胜攻无不克百战百胜屡战屡胜捷报频传喜讯连连好事成双福星高照鸿运当头大吉大利万事如意心想事成梦想成真愿望达成目标实现计划成功事业兴旺发达蒸蒸日上欣欣向荣繁荣昌盛国泰民安天下太平盛世祥瑞安康幸福快乐健康长寿平安顺遂吉祥如意诸事皆宜阖家欢乐团圆美满共享天伦共叙亲情增进感情加深友谊团结互助合作共赢共创未来同舟共济风雨兼程携手同行路向前迎接曙光拥抱黎明开启新篇谱写华章再创佳绩续写传奇留下美好回忆创造无限可能追求卓越成就非凡人生旅途精彩纷呈回味无穷意犹未尽恋恋不舍依依惜别期待下次再见相约明天更好! --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值