上下取整函数的关系以及一些重要性质(附证明)


tags: DSA Combinatorics Mathematics

写在前面

今天(2022.12.7)的lc每日一题, 虽然是中等但也有很多需要注意的点, 看到了0x3f大佬的题解才发现自己知识点的太多不足, 比如下面这个式子:(出自具体数学练习3.12)
⌈ n m ⌉ = ⌊ n + m − 1 m ⌋ = ⌊ n − 1 m ⌋ + 1. \left\lceil \frac{n}{m} \right\rceil = \left\lfloor \frac{n+m-1}{m} \right\rfloor = \left\lfloor \frac{n - 1}{m} \right\rfloor + 1. mn=mn+m1=mn1+1.
本文主要给出取整函数的一些内容, 包括几个重要的取整函数以及上下取整函数之间的关系等.

参考了具体数学1, Wikipedia2以及3.

基本概念

这里的一些定义, 记号等均参考了具体数学. 如无特殊说明, 均价定 x x x 为正整数.

取整函数

  1. 上取整(ceil): ⌈ x ⌉ \lceil x\rceil x, 表示大于等于 x x x的最小整数;
  2. 下取整(floor): ⌊ x ⌋ \lfloor x\rfloor x, 表示小于等于 x x x的最大整数;
  3. 取整(等价于下取整): [ x ] [x] [x], 同下取整.

数的表示

x ∈ R x\in\mathbb R xR, 则

  1. ⌊ x ⌋ \lfloor x\rfloor x表示 x x x的整数部分(integer part)

  2. { x } \{x\} {x}表示 x x x的分数部分(fractional part), (不与单元素集合混淆的情况下)

  3. 关系:
    x = ⌊ x ⌋ + { x }    ⟺    { x } = x − ⌊ x ⌋ . x=\lfloor x\rfloor+\{x\}\iff\{x\}=x-\lfloor x\rfloor. x=x+{x}{x}=xx.

取余运算

(下取整表示)设 m , n ∈ N ∗ m,n\in\mathbb N^* m,nN, 则
n = m ⋅ ⌊ n / m ⌋ ⏟ 商 + n   m o d   m ⏟ 余数 (1) n=m\cdot\underbrace{\lfloor n/m \rfloor}_{\text{商}}+\underbrace{n\bmod m}_{\text{余数}}\tag{1} n=m n/m+余数 nmodm(1)
其中, n   m o d   m ∈ [ 0 , m ) n\bmod m\in[0, m) nmodm[0,m).

性质

取余运算

范围

( 1 ) (1) (1), 得
n   m o d   m = n − m ⌊ n / m ⌋ n\bmod m=n-m\lfloor n/m \rfloor nmodm=nmn/m
推广:(设 x , y ∈ R x,y\in\mathbb R x,yR)
x   m o d   y = x − y ⌊ x / y ⌋ ,   y ≠ 0. x\bmod y=x-y\lfloor x/y \rfloor,\ y\ne0. xmody=xyx/y, y=0.
于是:
{ x   m o d   y ∈ [ 0 , y ) , y > 0 x   m o d   y ∈ ( y , 0 ] , y < 0 \begin{cases} x\bmod y\in [0,y),&y>0\\ x\bmod y\in (y,0],&y<0 \end{cases} {xmody[0,y),xmody(y,0],y>0y<0

另外, 定义
x   m o d   0 = x . (2) x\bmod 0=x.\tag{2} xmod0=x.(2)

类似, 定义一个新的运算 m u m b l e \rm mumble mumble, 用上取整表示数:
x = y ⋅ ⌈ x / y ⌉ − x   m u m b l e   y ,   y ≠ 0. x=y\cdot \lceil x/y\rceil-x\ \rm{mumble}\ y, \ y\ne0. x=yx/yx mumble y, y=0.

分配律

∀ c , x , y ∈ R \forall c,x,y\in \mathbb R c,x,yR,
c ( x   m o d   y ) = ( c x )   m o d   ( c y ) . c(x\bmod y)=(cx)\bmod(cy). c(xmody)=(cx)mod(cy).

证明:

∀ c y ≠ 0 \forall cy\ne0 cy=0,
c ( x   m o d   y ) = c ( x − y ⌊ x / y ⌋ ) = c x − c y ⌊ c x / c y ⌋ = ( c x )   m o d   ( c y ) . \begin{aligned} c(x\bmod y) &=c(x-y\lfloor x/y\rfloor)\\ &=cx-cy\lfloor cx/cy\rfloor\\ &=(cx)\bmod(cy). \end{aligned} c(xmody)=c(xyx/y⌋)=cxcycx/cy=(cx)mod(cy).
y = 0 y=0 y=0时, 根据定义 ( 2 ) (2) (2), 分配律依然成立.

数的表示

用取余重写数的表示(整数部分, 分数部分)
x = ⌊ x ⌋ + x   m o d   1. x=\lfloor x\rfloor+x\bmod 1. x=x+xmod1.

关系

幂等性

⌊ ⌊ x ⌋ ⌋ = ⌊ x ⌋ , ⌈ ⌈ x ⌉ ⌉ = ⌈ x ⌉ , { { x } } = { x } . \begin{aligned} \Big\lfloor \lfloor x \rfloor \Big\rfloor &= \lfloor x \rfloor, \\ \Big\lceil \lceil x \rceil \Big\rceil &= \lceil x \rceil, \\ \Big\{ \{ x \} \Big\} &= \{ x \}. \end{aligned} xx{{x}}=x,=x,={x}.

并有:(只关注内层作用)
⌊ ⌈ x ⌉ ⌋ = ⌈ x ⌉ , ⌈ ⌊ x ⌋ ⌉ = ⌊ x ⌋ , \begin{aligned} \Big\lfloor \lceil x \rceil \Big\rfloor &= \lceil x \rceil, \\ \Big\lceil \lfloor x \rfloor \Big\rceil &= \lfloor x \rfloor, \end{aligned} xx=x,=x,

互反律

⌊ x ⌋ + ⌈ − x ⌉ = 0 , − ⌊ x ⌋ = ⌈ − x ⌉ , − ⌈ x ⌉ = ⌊ − x ⌋ . \begin{aligned} \lfloor x \rfloor +\lceil -x \rceil &= 0, \\ -\lfloor x \rfloor &= \lceil -x \rceil, \\ -\lceil x \rceil &= \lfloor -x \rfloor. \end{aligned} x+xxx=0,=x,=x.

并且:
⌊ x ⌋ + ⌊ − x ⌋ = { 0 ,  若   x ∈ Z , − 1 ,  若   x ∉ Z , ⌈ x ⌉ + ⌈ − x ⌉ = { 0 ,  若   x ∈ Z , 1 ,  若   x ∉ Z . \lfloor x \rfloor + \lfloor -x \rfloor = \begin{cases} 0,&\text{ 若 }\ x\in \mathbb{Z},\\ -1,&\text{ 若 }\ x\not\in \mathbb{Z}, \end{cases} \\[5pt] \lceil x \rceil + \lceil -x \rceil = \begin{cases} 0,&\text{ 若 }\ x\in \mathbb{Z},\\ 1,&\text{ 若 }\ x\not\in \mathbb{Z}. \end{cases} x+x={0,1,   xZ,   xZ,x+x={0,1,   xZ,   xZ.
针对小数部分( { x } = x − ⌊ x ⌋ \{x \} = x - \lfloor x \rfloor {x}=xx):
{ x } + { − x } = { 0 ,  若   x ∈ Z , 1 ,  若   x ∉ Z . \{ x \} + \{ -x \} = \begin{cases} 0,&\text{ 若 }\ x\in \mathbb{Z},\\ 1,&\text{ 若 }\ x\not\in \mathbb{Z}. \end{cases} {x}+{x}={0,1,   xZ,   xZ.

与整数的关系

  1. ⌈ x ⌉ ⩾ x \lceil x\rceil\geqslant x xx; ⌊ x ⌋ ⩽ x \lfloor x\rfloor\leqslant x xx; ⌊ x ⌋ ⩽ ⌈ x ⌉ \lfloor x \rfloor \leqslant \lceil x \rceil xx.

  2. ⌊ x ⌋ = x    ⟺    x ∈ Z    ⟺    ⌈ x ⌉ = x \lfloor x\rfloor=x\iff x\in \mathbb Z\iff \lceil x\rceil=x x=xxZx=x;

  3. If x ∉ Z x\notin \mathbb Z x/Z, then ⌈ x ⌉ − ⌊ x ⌋ = [ x  not an integer ] = 1 \lceil x\rceil-\lfloor x\rfloor=[x\ \text{not an integer}]=1 xx=[x not an integer]=1.
    另一种表述:
    ⌈ x ⌉ − ⌊ x ⌋ = [ x 是否为整数 ] = { 0 ,  若   x ∈ Z , 1 ,  若   x ∉ Z . \lceil x \rceil - \lfloor x \rfloor = [x\text{是否为整数}]= \begin{cases} 0,&\text{ 若 }\ x\in \mathbb{Z},\\ 1,&\text{ 若 }\ x\not\in \mathbb{Z}. \end{cases} xx=[x是否为整数]={0,1,   xZ,   xZ.

  4. x − 1 < ⌊ x ⌋ x-1<\lfloor x\rfloor x1<x, x + 1 > ⌈ x ⌉ x+1>\lceil x\rceil x+1>x, so we have:
    x − 1 < ⌊ x ⌋ ⩽ x ⩽ ⌈ x ⌉ < x + 1. x-1<\lfloor x\rfloor\leqslant x\leqslant \lceil x\rceil<x+1. x1<xxx<x+1.


n ∈ Z ,   x ∈ R n\in\mathbb Z,\ x\in \mathbb R nZ, xR, 则有:
{ ⌊ x ⌋ = n    ⟺    n ⩽ x < n + 1 ⌊ x ⌋ = n    ⟺    x − 1 < n ⩽ x ⌈ x ⌉ = n    ⟺    n − 1 < x ⩽ n ⌈ x ⌉ = n    ⟺    x ⩽ n < x + 1 \begin{cases} \lfloor x\rfloor=n\iff n\leqslant x<n+1\\ \lfloor x\rfloor=n\iff x-1<n\leqslant x\\[10pt] \lceil x\rceil=n\iff n-1<x\leqslant n\\ \lceil x\rceil=n\iff x\leqslant n<x+1\\ \end{cases} x=nnx<n+1x=nx1<nxx=nn1<xnx=nxn<x+1
并有, 整数项移出取整号:
{ ⌊ x + n ⌋ = ⌊ x ⌋ + n , ⌈ x + n ⌉ = ⌈ x ⌉ + n , (*) \begin{cases} \lfloor x+n\rfloor=\lfloor x\rfloor+n,\\ \tag{*} \lceil x+n\rceil=\lceil x\rceil+n, \end{cases} {x+n=x+n,x+n=x+n,(*)
不等式的转换:
{ ⌊ x ⌋ < n    ⟺    x < n ⌊ x ⌋ ⩾ n    ⟺    x ⩾ n ⌈ x ⌉ > n    ⟺    x > n ⌈ x ⌉ ⩽ n    ⟺    x ⩽ n \begin{cases} \lfloor x\rfloor<n \iff x<n\\ \lfloor x\rfloor\geqslant n\iff x\geqslant n \\[10pt] \lceil x\rceil>n\iff x> n\\ \lceil x\rceil\leqslant n\iff x\leqslant n\\ \end{cases} x<nx<nxnxnx>nx>nxnxn

与函数的关系

f ( x ) f(x) f(x)是任意一个具有如下性质且在一个实数区间内连续的单调递增函数, 即:
f ( x ) = integer ⟹ x = integer . f(x)=\text{integer}\Longrightarrow x=\text{integer}. f(x)=integerx=integer.
则有(若函数 f ( x ) , f ( ⌊ x ⌋ ) , f ( ⌈ x ⌉ ) f(x),f(\lfloor x\rfloor),f(\lceil x\rceil) f(x),f(⌊x⌋),f(⌈x⌉)有定义)
⌊ f ( x ) ⌋ = ⌊ f ( ⌊ x ⌋ ) ⌋ , ⌈ f ( x ) ⌉ = ⌈ f ( ⌈ x ⌉ ) ⌉ . \lfloor f(x)\rfloor=\lfloor f(\lfloor x\rfloor)\rfloor,\quad \lceil f(x)\rceil=\lceil f(\lceil x\rceil)\rceil. f(x)⌋=f(⌊x⌋)⌋,f(x)⌉=f(⌈x⌉)⌉.

证明:(反证)

  • x = ⌈ x ⌉ x=\lceil x\rceil x=x, 显然成立.

  • x < ⌈ x ⌉ x<\lceil x\rceil x<x时, 根据函数 f ( x ) f(x) f(x)单调性得到:
    f ( x ) < f ( ⌈ x ⌉ ) , f(x)<f(\lceil x\rceil), f(x)<f(⌈x⌉),
    根据上取整函数非降性质, 又可得到:
    ⌈ f ( x ) ⌉ ⩽ ⌈ f ( ⌈ x ⌉ ) ⌉ , \lceil f(x)\rceil\leqslant \lceil f(\lceil x\rceil)\rceil, f(x)⌉f(⌈x⌉)⌉,

    • ⌈ f ( x ) ⌉ < ⌈ f ( ⌈ x ⌉ ) ⌉ \lceil f(x)\rceil< \lceil f(\lceil x\rceil)\rceil f(x)⌉<f(⌈x⌉)⌉, 由 f f f连续性, 必定存在数 y y y, 使得 x ⩽ y < ⌈ x ⌉ x\leqslant y<\lceil x\rceil xy<x, 以及 f ( y ) = ⌈ f ( x ) ⌉ f(y)=\lceil f(x)\rceil f(y)=f(x)⌉. 由于 f f f定义, y ∈ Z y\in\mathbb Z yZ, 但是不存在介于 ⌊ x ⌋ \lfloor x\rfloor x ⌈ x ⌉ \lceil x\rceil x之间的整数, 矛盾, 由此得证.

由此得到一个特例:

∀ m ∈ Z \forall m\in \mathbb Z mZ, n ∈ N ∗ n\in\mathbb N^* nN, 有
⌈ x + m n ⌉ = ⌈ ⌈ x ⌉ + m n ⌉ ,   ⌊ x + m n ⌋ = ⌊ ⌊ x ⌋ + m n ⌋ . (**) \left\lceil \frac {x+m}n\right\rceil=\left\lceil \frac {\lceil x\rceil+m}n\right\rceil,\ \left\lfloor \frac {x+m}n\right\rfloor=\left\lfloor \frac {\lfloor x\rfloor+m}n\right\rfloor.\tag{**} nx+m=nx+m, nx+m=nx+m.(**)

恒等式

每组近似分配(埃尔米特恒等式的特例)

n n n个物品分成 m m m组, 按照非增次序排列且尽可能相等的部分的划分:
n = ⌈ n m ⌉ + ⌈ n − 1 m ⌉ + ⋯ + ⌈ n − m + 1 m ⌉ . (3) n=\left\lceil \frac nm\right\rceil+\left\lceil \frac {n-1}m\right\rceil+\cdots+\left\lceil \frac {n-m+1}m\right\rceil.\tag{3} n=mn+mn1++mnm+1.(3)

证明: (构造)

n = q m + r n=qm+r n=qm+r, 其中 q = ⌊ n / m ⌋ q=\lfloor n/m\rfloor q=n/m, r = n   m o d   m , 0 ⩽ r < m r=n\bmod m, 0\leqslant r<m r=nmodm,0r<m, 则:

  • r = 0 r=0 r=0, 此时将 q = ⌊ n / m ⌋ q=\lfloor n/m\rfloor q=n/m件物品放入第一组, 并且用 n ′ = n − q n'=n-q n=nq替换 n n n, 让 n ′ = q m ′ n'=qm' n=qm件物品放入剩下的 m ′ = m − 1 m'=m-1 m=m1组中, 重复这个操作直到物品都被分组.

  • r > 0 r>0 r>0, 将 ⌈ n / m ⌉ = ⌊ n / m ⌋ + 1 = q + 1 \lceil n/m\rceil=\lfloor n/m\rfloor+1= q+1 n/m=n/m+1=q+1件物品放进第一组, 用 n ′ = n − q − 1 n'=n-q-1 n=nq1替换 n n n,

    n ′ = n − q − 1 = q m + r − q − 1 = q ( m − 1 ⏟ m ′ ) + r − 1 ⏟ r ′ n'=n-q-1=qm+r-q-1=q(\underbrace{m-1}_{m'})+\underbrace{r-1}_{r'} n=nq1=qm+rq1=q(m m1)+r r1

    n ′ = q m ′ + r − 1 n'=qm'+r-1 n=qm+r1件物品留给后面的分组. 此时新的余数为 r ′ = r − 1 r'=r-1 r=r1, 但 q q q保持不变.
    当余数 r r r减到 0 0 0时, 此时情况同上, 所以有
    n 件商品 : { r 个组 : q + 1 件物品 m − r 个组 : q 件物品 n件商品:\begin{cases} \qquad r个组:q+1件物品\\ m-r个组:q件物品 \end{cases} n件商品:{r个组:q+1件物品mr个组:q件物品

那么在第 k k k组( 1 ⩽ k ⩽ m 1\leqslant k\leqslant m 1km)中有多少物品?

应该是:
⌈ n − k + 1 m ⌉ \left\lceil \frac {n-k+1}m\right\rceil mnk+1

证明:

n = q m + r n=qm+r n=qm+r代入上式, 得到:
⌈ n − k + 1 m ⌉ = ⌈ q m + r − k + 1 m ⌉ = ( ∗ ) q + ⌈ r − k + 1 m ⌉ \left\lceil \frac {n-k+1}m\right\rceil=\left\lceil \frac {qm+r-k+1}m\right\rceil\stackrel{(*)}{=}q+\left\lceil \frac {r-k+1}m\right\rceil mnk+1=mqm+rk+1=()q+mrk+1
应用边界条件: 1 ⩽ k ⩽ m ,   0 ⩽ r < m 1\leqslant k\leqslant m,\ 0\leqslant r<m 1km, 0r<m, 得到
⌈ r − k + 1 m ⌉ = [ k ⩽ r ] \left\lceil \frac {r-k+1}m\right\rceil=[k\leqslant r] mrk+1=[kr]
上面的 [ k ⩽ r ] [k\leqslant r] [kr]表示当满足 k ⩽ r k\leqslant r kr时, 取 1 1 1, 否则取 0 0 0, 这正好满足我们上面给出的构造分组的方法.

将其写成累加形式, 则有:
n = ⌈ n m ⌉ + ⌈ n − 1 m ⌉ + ⋯ + ⌈ n − m + 1 m ⌉ = ∑ i = 0 m − 1 ⌈ n − i m ⌉ = q m + ∑ i = 0 m − 1 ⌈ r − i m ⌉ = q m + ∑ i = 0 r − 1 ⌈ r − i m ⌉ = q m + r \begin{aligned} n&=\left\lceil \frac nm\right\rceil+\left\lceil \frac {n-1}m\right\rceil+\cdots+\left\lceil \frac {n-m+1}m\right\rceil\\ &=\sum_{i=0}^{m-1}\left\lceil \frac {n-i}m\right\rceil=qm+\sum_{i=0}^{m-1}\left\lceil \frac {r-i}m\right\rceil\\ &=qm+\sum_{i=0}^{r-1}\left\lceil \frac {r-i}m\right\rceil=qm+r\\ \end{aligned} n=mn+mn1++mnm+1=i=0m1mni=qm+i=0m1mri=qm+i=0r1mri=qm+r

同理, 根据各个部分按照非减的次序排列, 小的组放在前面, ( ⌊ n / m ⌋ \lfloor n/m\rfloor n/m在第一组)就得到:
n = ⌊ n m ⌋ + ⌊ n + 1 m ⌋ + ⋯ + ⌊ n + m − 1 m ⌋ . (3’) n=\left\lfloor \frac nm\right\rfloor+\left\lfloor \frac {n+1}m\right\rfloor+\cdots+\left\lfloor \frac {n+m-1}m\right\rfloor.\tag{3'} n=mn+mn+1++mn+m1.(3’)
针对上面得到的结论, 还可以进行推广:

利用 ⌊ m x ⌋ \lfloor mx\rfloor mx替换 ( 3 ′ ) (3') (3)式中的 n n n, 并用 ( ∗ ∗ ) (**) ()式去掉下取整函数中的下取整函数可以得到:
⌊ m x ⌋ = ⌊ x ⌋ + ⌊ x + 1 m ⌋ + ⋯ + ⌊ x + m − 1 m ⌋ . \lfloor mx\rfloor=\left\lfloor x\right\rfloor+\left\lfloor x+\frac 1m\right\rfloor+\cdots+\left\lfloor x+\frac{m-1}m\right\rfloor. mx=x+x+m1++x+mm1.
上式就是埃尔米特恒等式.

★ \bigstar 上下取整转换

下面介绍前言部分提到的一个重要的关系, 利用这个式子可以方便的转换上取整和下取整, 因为计算机编程语言中常用下取整.
⌈ n m ⌉ = ⌊ n + m − 1 m ⌋ = ⌊ n − 1 m ⌋ + 1. (***) \left\lceil \frac{n}{m} \right\rceil = \left\lfloor \frac{n+m-1}{m} \right\rfloor = \left\lfloor \frac{n - 1}{m} \right\rfloor + 1.\tag{***} mn=mn+m1=mn1+1.(***)
以及:
⌊ n m ⌋ = ⌈ n − m + 1 m ⌉ = ⌈ n + 1 m ⌉ − 1. \left\lfloor \frac{n}{m} \right\rfloor = \left\lceil \frac{n-m+1}{m} \right\rceil = \left\lceil \frac{n + 1}{m} \right\rceil - 1. mn=mnm+1=mn+11.

证明:(方法1)

直接由埃尔米特恒等式的特例 ( 3 ) (3) (3)的第一项等于 ( 3 ′ ) (3') (3)式的第二项, 即为本结论, 需要从组合意义角度出发. (分组方法)

证明:(方法2)

( ∗  ⁣ ∗  ⁣ ∗ ) (*\!*\!*) ()两端同时减去 ⌊ n m ⌋ \left\lfloor \dfrac nm\right\rfloor mn, 得到:

  • 左边:(利用与整数的关系之3)
    ⌈ n m ⌉ − ⌊ n m ⌋ = ⌈ n   m o d   m m ⌉ = { 0 ,  若  n   m o d   m = 0 , 1 ,  若  n   m o d   m > 0. \left\lceil \frac{n}{m} \right\rceil-\left\lfloor \dfrac nm\right\rfloor=\left\lceil\frac{n\bmod m}{m}\right\rceil=\begin{cases} 0,&\text{ 若 }n\bmod m=0,\\ 1,&\text{ 若 }n\bmod m>0. \end{cases} mnmn=mnmodm={0,1,  nmodm=0,  nmodm>0.

  • 右边:
    可设 n = m q + r n=mq+r n=mq+r, 并有 q = ⌊ n / m ⌋ , 0 ⩽ r = n   m o d   m < m q=\lfloor n/m \rfloor,0\leqslant r=n\bmod m<m q=n/m,0r=nmodm<m, 则
    ⌊ n + m − 1 m ⌋ − ⌊ n m ⌋ = ⌊ m q + m + r − 1 m ⌋ − ⌊ m q + r m ⌋ = ⌊ r + m − 1 m ⌋ − ⌊ r m ⌋ = ⌊ r + m − 1 m ⌋ = ⌊ n   m o d   m + m − 1 m ⌋ = { 0 ,  若  n   m o d   m = 0 , 1 ,  若  n   m o d   m > 0. \begin{aligned} \left\lfloor \frac{n+m-1}{m} \right\rfloor-\left\lfloor \frac nm\right\rfloor &=\left\lfloor \frac{mq+m+r-1}{m} \right\rfloor-\left\lfloor \frac {mq+r}m\right\rfloor\\ &=\left\lfloor \frac{r+m-1}{m} \right\rfloor-\left\lfloor \frac {r}m\right\rfloor\\ &=\left\lfloor \frac{r+m-1}{m} \right\rfloor\\ &=\left\lfloor \frac{n\bmod m+m-1}{m} \right\rfloor\\ &=\begin{cases} 0,&\text{ 若 }n\bmod m=0,\\ 1,&\text{ 若 }n\bmod m>0. \end{cases} \end{aligned} mn+m1mn=mmq+m+r1mmq+r=mr+m1mr=mr+m1=mnmodm+m1={0,1,  nmodm=0,  nmodm>0.

即得结论.

当然, 还有通过广义Ramsey定理证明的方法(鸽巢原理的推广), 可以参见3.

总的来看, 这个结论通过上面的近似分组问题就可以解释了.

ref


  1. 具体数学; ↩︎

  2. 取整函数 - 维基百科,自由的百科全书 (wikipedia.org); ↩︎

  3. 上取整与下取整的转换 - flyor - 博客园 (cnblogs.com); ↩︎ ↩︎

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zorchp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值