一,可视化理解Binary Cross-Entropy(推荐反复阅读)
介绍
如果你正在训练一个二分类器,很有可能你正在使用的损失函数是二值交叉熵/对数(binary cross-entropy / log)。
你是否想过使用此损失函数到底意味着什么?问题是,鉴于如今库和框架的易用性,很容易让人忽略所使用损失函数的真正含义。
动机
我一直在寻找一个可以向学生展示的以清晰简洁可视化的方式解释二值交叉熵/对数损失背后概念的博客文章。但由于我实在找不到,只好自己承担了编写的任务:-)
一个简单的分类问题
让我们从10个随机点开始:
x = [-2.2, -1.4, -0.8, 0.2, 0.4, 0.8, 1.2, 2.2, 2.9, 4.6]
这是唯一的特征:*x*