统计学习方法读书笔记(十三)-无监督学习概述

全部笔记的汇总贴:统计学习方法读书笔记汇总贴

一、无监督学习基本原理

  • 聚类
  • 降维
  • 概率估计

无监督学习是一个困难的任务,因为数据没有标注,也就是说没有人的指导,机器需要自己从数据中找出规律。

二、基本问题

  • 聚类(clustering)是将样本集合中相似的样本(实例)分配到相同的类,不相似的样本分配到不同的类。
  • 降维(dimensionality reduction)是将训练数据中的样本(实例)从高维空间转换到低维空间。
  • 概率模型估计(probability model estimation),简称概率估计,假设训练数据由一个概率模型生成,由训练数据学习概率模型的结构和参数。

三、机器学习三要素

  • 模型
  • 策略
  • 算法

四、无监督学习方法

  • 聚类:层次聚类、k均值聚类
  • 降维:奇异值分解、主成分分析
  • 话题分析:(概率模型估计问题或降维问题)潜在语义分析、概率潜在语义分析、潜在迪利克雷分布、马尔科夫链蒙特卡洛方法
  • 图分析:PageRank算法

下一章传送门:统计学习方法读书笔记(十四)-聚类方法

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页