【机器学习】无监督学习的概念,使用无监督学习发现数据的特点

本文介绍了无监督学习的概念及其在降维、因子分析和聚类分析中的应用。重点讲解了K-means聚类算法,包括其原理、在OpenCV中的实现以及如何评估聚类效果。通过一个生成四个聚类的图像示例,展示了K-means如何自动将数据点分配到相应的类别。最后,讨论了K-means作为预处理和特征提取的用途,并强调了无监督学习在没有标签数据时的价值。
摘要由CSDN通过智能技术生成

到目前位置,我们主要把注意力集中在监督学习的问题上,数据集中的每个数据点都有一个已知的标签或者目标值。然而如果面对没有已知的输出结果,或者没有人监督学习算法,我们要怎么做。

这就是无监督学习 。

在无监督、非监督学习中了,学习过程仅使用输入数据,没有更多的指导信息,要求从这些数据中提取知识。我们已经讨论了非监督学习众多形式的一种降维。另一个普及的领域就是聚类分析。他的目的是吧数据分为相似元素组成的不同区域中。

在本章中,我们想要理解不同的聚类算法如何从简单到,无标记的数据集中提取特征。这些结构特征,可以用于特征处理,图像处理,甚至是作为无监督学习任务的预处理步骤。
作为一个具体的例子,我们将对图像进行聚类,将色彩空间降到16位数。

解决的问题
1.K-means聚类和期望最大化是什么?如何在opencv中实现这些算法。
2.如何在层次树中使用聚类算法。他带来的好处有哪些。
3.如何使用无监督学习,进行预处理,图像处理,分类。

1 理解无监督学习

无监督学习可能有很多形式,但是他们的目标总是把原始数据转化为更加丰富,更加有意义的表示,这么做可以让人们更容易理解,也可以更方便的使用机器学习算法进行解析。
无监督学习的应用包括一下应用:
1降维:他接受一个许多特征的高维度数据表示,尝试对这些数据进行压缩,以使其主要特征,可以使用少量的携带高信息量的数据来表示。
2因子分析:用于找到导致被观察的到的数据的隐含因素或者未观察到的方面。
3聚类分析:
尝试把数据分成相似元素组成的不同组。

无监督学习主要的挑战就是,如何确定一个算法是否出色,或者学习到什么有用内容,通常评估一个无监督学习算法结果的唯一方式是手动检查,并确定结果是否有意义。

话虽然如此,但是非监督学习,可以非常有,比如作为预处理或者特征提取的步骤。

2理解K-means聚类

Opencv 提供最有用的聚类算法是k-means,因为它会从一个没有标记的多维度数据集中搜寻预设的K个聚类结果。

它通过两个简单的假设来完成最佳聚类了。
1 每个聚类中心都是属于该类别的所有数据点的算术平均值
2 聚类中的每一个点相对其他聚类中心,更靠近本类别的中心。

2.1 实现第一个kmeans例子

首先,生成一个包含四个不同点集合的数据集。为了强调这是一个非监督的方法,我门在可视化将忽略哪些标签。使用matplotlib进行可视化。

import matplotlib.pyplot as plt
import pylab
from sklearn.datasets._samples_generator import make_blobs

plt.style.use('ggplot')
x,y=make_blobs(n_samples=300,centers=4,cluster_std=1.0,random_state=10)
plt.scatter(x[:,0],x[:,1],s=100)
pylab.show()


在这里插入图片描述
我们创建一个四个不同区域的聚类,centers=4,一共300节点。
如上程序生成图像所示结果。
尽管没有给数据分配目标标签,但直接使用肉眼还是可以看出来一共是四类。
kmeans就可以通过算法办到,无需任何关于目标的标签或者潜在的数据分布的信息。
当然尽管,kmeans在opencv中是一个统计模型,不能调用api中的train和predict。相反,使用cv2.kmeans可以直接使用这个算法。。为了使用这个模型,我们需要指定一些参数,比如终止条件,和初始化标志。

我们让算法误差小于1.0(cv2.TERM_CRITERIA_EPS),或者已经 执行了十次迭代(cv2.TERM_CITTERIA_MAX_ITER)时候终止。

在这里插入图片描述

import matplotlib.pyplot as plt
import pylab
from sklearn.datasets._samples_generator import make_blobs
import cv2
import numpy as np

plt.style.use('ggplot')
x,y=make_blobs(n_samples=300,centers=4,cluster_std=1.0,random_state=10)
plt.scatter(x[:,0],x[:,1],s=100)


criteria=(cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER,10,1.0)
flags=cv2.KMEANS_RANDOM_CENTERS
compactness,labels,centers=cv2.kmeans(x.astype(np.float32),4,None,criteria,10,flags)
print(compactness)

plt.scatter(x[:,0],x[:,1],c=labels,s=50,cmap='viridis')
plt.scatter(centers[:,0],centers[:,1],c='black',s=200,alpha=0.5)

pylab.show()






上面程序结果可以产生图2的效果。

print(compactness)这个变量,表示每个点到它聚类中心的距离平方和。较高紧凑都表明所有的点更靠近他们的聚类中心,较低 的紧凑度表明不同的聚类可能无法的很好区分。

当然,这个是非常依赖于x中的真实值。如果点与点之间最初的距离比较大,那我们就很难得到一个非常小的紧凑度。因此,把数据画出来,并按照聚类标签分配不同颜色,可以显示更多信息。

3理解kmeans

kmeans是聚类众多常见期望最大化中一个具体的例子。简单来说,算法处理的过程如下所示:
1.从一些随机的聚类中心开始
2.一种重复直到收敛

期望步骤:把所有的数据点分配到离他们最近的聚类中心。
最大化步骤:通过取出聚类中所有点的平均来更新聚类中心。

它涉及到一个定义聚类中心位置的适应性函数最大化的过程。对于kmeans最大化是计算一个聚类中所有数据点的算数平均得到。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高山仰止景

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值