统计学习方法读书笔记(二十四)-附录B 牛顿法和拟牛顿法

本文介绍了牛顿法及其在高维数据中的问题,随后详细探讨了拟牛顿法,包括DFP算法、BFGS算法和Broyden类算法的原理和迭代公式。通过实例和矩阵运算展示了这些方法如何近似求解Hessian矩阵的逆,为解决高维度优化问题提供了有效途径。
摘要由CSDN通过智能技术生成

全部笔记的汇总贴:统计学习方法读书笔记汇总贴

一、牛顿法

在这里插入图片描述
存在的几个问题:

  • H − 1 H^{-1} H1不存在,导致(4)无意义;
  • H − 1 H^{-1} H1存在但不正定,导致 f k + 1 ≥ f k f_{k+1}\ge f_k fk+1fk
  • H − 1 H^{-1} H1存在且正定,但若 p k p_k pk很大,由(5)可知,不能保证 f k + 1 < f k f_{k+1}< f_k fk+1<fk

给个例子:

和上一节的例子一样,我们用牛顿法求解。
f ( x ) = 1 2 x 1 2 + 1 2 x 2 2 + 1 2 x 3 2 , x 0 = [ 1 , 1 , 1 ] T , 求 min ⁡ [ f ( x ) ] f(x)=\frac12x^2_1+\frac12x^2_2+\frac12x^2_3,x_0=[1,1,1]^T,求\min[f(x)] f(x)=21x12+21x22+21x32,x0=[1,1,1]T,min[f(x)]
解: f ( x ) = f ( x 1 , x 2 , x 3 ) = 1 2 x 1 2 + 1 2 x 2 2 + 1 2 x 3 2 f(x)=f(x_1,x_2,x_3)=\frac12x^2_1+\frac12x^2_2+\frac12x^2_3 f(x)=f(x1,x2,x3)=21x12+21x22+21x32
g ( x ) = ( x 1 , x 2 , x 3 ) T              ∇ 2 f ( x ) = ( 1 0 0 0 1 0 0 0 1 ) g(x)=(x_1,x_2,x_3)^T\;\;\;\;\;\;\nabla^2f(x) =\begin{pmatrix} 1 & 0 & 0 \\ 0& 1& 0 \\ 0 & 0 & 1 \end{pmatrix} g(x)=(x1,x2,x3)T2f(x)=100010001
x 0 = ( 1 , 1 , 1 ) T              f 0 = f ( x 0 ) = 1.5 x_0=(1,1,1)^T\;\;\;\;\;\;f_0=f(x_0)=1.5 x0=(1,1,1)T

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值