《百面机器学习》读书笔记(二)-模型估计

全部笔记的汇总贴:《百面机器学习》-读书笔记汇总

在计算机科学特别是机器学习领域中,对模型的评估同样至关重要。只有选择与问题相匹配的评估方法,才能快速地发现模型选择或训练过程中出现的问题,迭代地对模型进行优化。模型评估主要分为离线评估和在线评估两个阶段。针对分类、排序、回归、序列预测等不同类型的机器学习问题,评估指标的选择也有所不同。知道每种评估指标的精确定义、有针对性地选择合适的评估指标、根据评估指标的反馈进行模型调整,这些都是机器学习在模型评估阶段的关键问题,也是一名合格的算法工程师应当具备的基本功。

一、评估指标的局限性

在模型评估过程中,分类问题、排序问题、回归问题往往需要使用不同的指标进行评估。在诸多的评估指标中,大部分指标只能片面地反映模型的一部分性能。如果不能合理地运用评估指标,不仅不能发现模型本身的问题,而且会得出错误的结论。

  • ★☆☆☆☆ 准确率的局限性

准确率是分类问题中最简单也是最直观的评价指标,但存在明显的缺陷。当负样本占99%时,分类器把所有样本都预测为负样本也可以获得99%的准确率。所以,当不同类别的样本比例非常不均衡时,占比大的类别往往成为影响准确率的最主要因素。
而且,即使评估指标选择对了,仍会存在模型过拟合或欠拟、测试集和训练集划分不合理、线下评估与线上测试的样本分布存在差异等一系列问题,但评估指标的选择是最容易被发现,也是最可能影响评估结果的因素。

  • ★☆☆☆☆ 精确率与召回率的权衡

精确率是指分类正确的正样本个数占分类器判定为正样本的样本个数的比例。召回率是指分类正确的正样本个数占真正的正样本个数的比例。
Precision值和Recall值是既矛盾又统一的两个指标,为了提高Precision值,分类器需要尽量在“更有把握”时才把样本预测为正样本,但此时往往会因为过于保守而漏掉很多“没有把握”的正样本,导致Recall值降低。
此外,F1score和ROC曲线也能综合地反映一个排序模型的性能。F1score是精准率和召回率的调和平均值,它定义为 F 1 = 2 ∗ p r e c i s i o n ∗ r e c a l l p r e c i s i o n + r e c a l l F1=\frac{2*precision*recall}{precision+recall} F1=precision+recall2precisionrecall

  • ★☆☆☆☆ 平方根误差的“意外”

模型在95%的时间区间内的预测误差都小于1%,这说明,在大部分时间区间内,模型的预测效果都是非常优秀的。这很可能是由于在其他的5%时间区间内存在非常严重的离群点。

  • 如果我们认定这些离群点是“噪声点”的话,就需要在数据预处理的阶段把这些噪声点过滤掉。
  • 如果不认为这些离群点是“噪声点”的话,就需要进一步提高模型的预测能力,将离群点产生的机制建模进去(这是一个宏大的话题,这里就不展开讨论了)。
  • 可以找一个更合适的指标来评估该模型。
    例如用MAPE代替RMSE,MAPE能够将每个点的误差进行归一化,降低个别离群点带来的绝对误差影响。

选择合适的评估指标是很重要的,每个评估指标都有其价值,但如果只从单一的评估指标出发去评估模型,往往会得出片面甚至错误的结论;只有通过一组互补的指标去评估模型,才能更好地发现并解决模型存在的问题,从而更好地解决实际业务场景中遇到的问题。

二、ROC曲线

二值分类器(Binary Classifier)是机器学习领域中最常见也是应用最广泛的分类器。评价二值分类器的指标很多,这些指标或多或少只能反映模型在某一方面的性能。相比而言,ROC曲线则有很多优点,经常作为评估二值分类器最重要的指标之一。

  • ★☆☆☆☆ 什么是ROC曲线?

ROC曲线是Receiver Operating Characteristic Curve的简称,中文名为“受试者工作特征曲线”。ROC曲线源于军事领域,而后在医学领域应用甚广,“受试者工作特征曲线”这一名称也正是来自于医学领域。
ROC曲线的横坐标为假阳性率(False Positive Rate,FPR);纵坐标为真阳性率(True Positive Rate,TPR)。FPR和TPR的计算方法分别为 F P R = F P N            T P R = T P P FPR=\frac{FP}{N}\;\;\;\;\;TPR=\frac{TP}P FPR=NFPTPR=PTP
上式中,P是真实的正样本的数量,N是真实的负样本的数量,TP是P个正样本中被分类器预测为正样本的个数,FP是N个负样本中被分类器预测为正样本的个数。
只看定义确实有点绕,为了更直观地说明这个问题,我们举一个医院诊断病人的例子。假设有10位疑似癌症患者,其中有3位很不幸确实患了癌症(P=3),另外7位不是癌症患者(N=7)。医院对这10位疑似患者做了诊断,诊断出3位癌症患者,其中有2位确实是真正的患者(TP=2)。那么真阳性率TPR=TP/P=2/3。对于7位非癌症患者来说,有一位很不幸被误诊为癌症患者(FP=1),那么假阳性率FPR=FP/N=1/7。对于“该医院”这个分类器来说,这组分类结果就对应ROC曲线上的一个点(1/7,2/3)。

  • ★★☆☆☆ 如何绘制ROC曲线?
样本序号真实标签模型输出概率
1p0.9
2p0.8
3n0.7
4p0.6
5p0.55
6p0.54
7n0.53
8n0.52
9p0.51
10n0.505
11p0.4
12n0.39
13p0.38
14n0.37
15n0.36
16n0.35
17p0.34
18n0.33
19p0.3
20n0.1

ROC曲线是通过不断移动分类器的“截断点”来生成曲线上的一组关键点的,通过下面的例子进一步来解释“截断点”的概念。
在二值分类问题中,模型的输出一般都是预测样本为正例的概率。假设测试集中有20个样本,上表是模型的输出结果。样本按照预测概率从高到低排序。在输出最终的正例、负例之前,我们需要指定一个阈值,预测概率大于该阈值的样本会被判为正例,小于该阈值的样本则会被判为负例。比如,指定阈值为0.9,那么只有第一个样本会被预测为正例,其他全部都是负例。上面所说的“截断点”指的就是区分正负预测结果的阈值。
通过动态地调整截断点,从最高的得分开始(实际上是从正无穷开始,对应着ROC曲线的零点),逐渐调整到最低得分,每一个截断点都会对应一个FPR和TPR,在ROC图上绘制出每个截断点对应的位置,再连接所有点就得到最终的ROC曲线。
就本例来说,当截断点选择为正无穷时,模型把全部样本预测为负例,那么FP和TP必然都为0,FPR和TPR也都为0,因此曲线的第一个点的坐标就是(0,0)。当把截断点调整为0.9时,模型预测1号样本为正样本,并且该样本确实是正样本,因此,TP=1,20个样本中,所有正例数量为P=10,故TPR=TP/P=1/10;这里没有预测错的正样本,即FP=0,负样本总数N=10,故FPR=FP/N=0/10=0,对应ROC曲线上的点(0,0.1)。依次调整截断点,直到画出全部的关键点,再连接关键点即得到最终的ROC曲线,如下图所示。
在这里插入图片描述
其实,还有一种更直观地绘制ROC曲线的方法。首先,根据样本标签统计出正负样本的数量,假设正样本数量为P,负样本数量为N;接下来,把横轴的刻度间隔设置为1/N,纵轴的刻度间隔设置为1/P;再根据模型输出的预测概率对样本进行排序(从高到低);依次遍历样本,同时从零点开始绘制ROC曲线,每遇到一个正样本就沿纵轴方向绘制一个刻度间隔的曲线,每遇到一个负样本就沿横轴方向绘制一个刻度间隔的曲线,直到遍历完所有样本,曲线最终停在(1,1)这个点,整个ROC曲线绘制完成。

  • ★★☆☆☆ 如何计算AUC?

顾名思义,AUC指的是ROC曲线下的面积大小,该值能够量化地反映基于ROC曲线衡量出的模型性能。计算AUC值只需要沿着ROC横轴做积分就可以了。由于ROC曲线一般都处于 y = x y=x y=x这条直线的上方(如果不是的话,只要把模型预测的概率反转成1−p就可以得到一个更好的分类器),所以AUC的取值一般在0.5~1之间。AUC越大,说明分类器越可能把真正的正样本排在前面,分类性能越好。

  • ★★★☆☆ ROC曲线相比P-R曲线有什么特点?

相比P-R曲线,ROC曲线有一个特点,当正负样本的分布发生变化时,ROC曲线的形状能够基本保持不变,而P-R曲线的形状一般会发生较剧烈的变化。
图2.3是ROC曲线和P-R曲线的对比图,其中图2.3(a)和图2.3(c)是ROC曲线,图2.3(b)和图2.3(d)是P-R曲线,图2.3(c)和图2.3(d)则是将测试集中的负样本数量增加10倍后的曲线图。
可以看出,P-R曲线发生了明显的变化,而ROC曲线形状基本不变。这个特点让ROC曲线能够尽量降低不同测试集带来的干扰,更加客观地衡量模型本身的性能。这有什么实际意义呢?在很多实际问题中,正负样本数量往往很不均衡。比如,计算广告领域经常涉及转化率模型,正样本的数量往往是负样本数量的1/1000甚至1/10000。若选择不同的测试集,P-R曲线的变化就会非常大,而ROC曲线则能够更加稳定地反映模型本身的好坏。所以,ROC曲线的适用场景更多,被广泛用于排序、推荐、广告等领域。但需要注意的是,选择P-R曲线还是ROC曲线是因实际问题而异的,如果研究者希望更多地看到模型在特定数据集上的表现,P-R曲线则能够更直观地反映其性能。
在这里插入图片描述

三、余弦距离的应用

在模型训练过程中,我们也在不断地评估着样本间的距离,如何评估样本距离也是定义优化目标和训练方法的基础。

在机器学习问题中,通常将特征表示为向量的形式,所以在分析两个特征向量之间的相似性时,常使用余弦相似度来表示。余弦相似度的取值范围是[−1,1],相同的两个向量之间的相似度为1。如果希望得到类似于距离的表示,将1减去余弦相似度即为余弦距离。因此,余弦距离的取值范围为[0,2],相同的两个向量余弦距离为0。

  • ★★☆☆☆ 结合你的学习和研究经历,探讨为什么在一些场景中要使用余弦相似度而不是欧氏距离?

于两个向量A和B,其余弦相似度定义为 c o s ( A , B ) = A ⋅ B ∣ ∣ A ∣ ∣ 2 ∣ ∣ B ∣ ∣ 2 cos(A,B)=\frac{A\cdot B}{||A||_2||B||_2} cos(A,B)=A2B2AB即两个向量夹角的余弦,关注的是向量之间的角度关系,并不关心它们的绝对大小,其取值范围是[−1,1]。当一对文本相似度的长度差距很大、但内容相近时,如果使用词频或词向量作为特征,它们在特征空间中的的欧氏距离通常很大;而如果使用余弦相似度的话,它们之间的夹角可能很小,因而相似度高。此外,在文本、图像、视频等领域,研究的对象的特征维度往往很高,余弦相似度在高维情况下依然保持“相同时为1,正交时为0,相反时为−1”的性质,而欧氏距离的数值则受维度的影响,范围不固定,并且含义也比较模糊。在一些场景,例如Word2Vec中,其向量的模长是经过归一化的,此时欧氏距离与余弦距离有着单调的关系,即 ∣ ∣ A − B ∣ ∣ 2 = 2 ( 1 − c o s ( A , B ) ) ||A-B||_2=\sqrt{2(1-cos(A,B))} AB2=2(1cos(A,B)) 其中 ∣ ∣ A − B ∣ ∣ 2 || A−B ||_2 AB2表示欧氏距离, c o s ( A , B ) cos(A,B) cos(A,B)表示余弦相似度, ( 1 − c o s ( A , B ) ) (1−cos(A,B)) (1cos(A,B))表示余弦距离。在此场景下,如果选择距离最小(相似度最大)的近邻,那么使用余弦相似度和欧氏距离的结果是相同的。
   \;
总体来说,欧氏距离体现数值上的绝对差异,而余弦距离体现方向上的相对差异。例如,统计两部剧的用户观看行为,用户A的观看向量为(0,1),用户B为(1,0);此时二者的余弦距离很大,而欧氏距离很小;我们分析两个用户对于不同视频的偏好,更关注相对差异,显然应当使用余弦距离。而当我们分析用户活跃度,以登陆次数(单位:次)和平均观看时长(单位:分钟)作为特征时,余弦距离会认为(1,10)、(10,100)两个用户距离很近;但显然这两个用户活跃度是有着极大差异的,此时我们更关注数值绝对差异,应当使用欧氏距离。

  • ★★★☆☆ 余弦距离是否是一个严格定义的距离?

余弦距离满足正定性和对称性,但是不满足三角不等式,因此它并不是严格定义的距离。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在机器学习领域,被俗称为距离,却不满足三条距离公理的不仅仅有余弦距离,还有KL距离(Kullback-Leibler Divergence),也叫作相对熵,它常用于计算两个分布之间的差异,但不满足对称性和三角不等式。

四、A/B测试的陷阱

在互联网公司中,A/B 测试是验证新模块、新功能、新产品是否有效,新算法、新模型的效果是否有提升,新设计是否受到用户欢迎,新更改是否影响用户体验的主要测试方法。在机器学习领域中,A/B 测试是验证模型最终效果的主要手段。

  • ★☆☆☆☆ 在对模型进行过充分的离线评估之后,为什么还要进行在线A/B测试?

要进行在线A/B测试的原因如下。

  1. 离线评估无法完全消除模型过拟合的影响,因此,得出的离线评估结果无法完全替代线上评估结果。
  2. 离线评估无法完全还原线上的工程环境。一般来讲,离线评估往往不会考虑线上环境的延迟、数据丢失、标签数据缺失等情况。因此,离线评估的结果是理想工程环境下的结果。
  3. 线上系统的某些商业指标在离线评估中无法计算。离线评估一般是针对
    模型本身进行评估,而与模型相关的其他指标,特别是商业指标,往往无法直接获得。比如,上线了新的推荐算法,离线评估往往关注的是ROC曲线、P-R曲线等的改进,而线上评估可以全面了解该推荐算法带来的用户点击率、留存时长、PV访问量等的变化。这些都要由A/B测试来进行全面的评估。
  • ★☆☆☆☆ 如何进行线上A/B测试?

进行A/B测试的主要手段是进行用户分桶,即将用户分成实验组和对照组,对实验组的用户施以新模型,对对照组的用户施以旧模型。在分桶的过程中,要注意样本的独立性和采样方式的无偏性,确保同一个用户每次只能分到同一个桶中,在分桶过程中所选取的user_id需要是一个随机数,这样才能保证桶中的样本是无偏的。

  • ★★☆☆☆ 如何划分实验组和对照组

H公司的算法工程师们最近针对系统中的“美国用户”研发了一套全新的视频推荐模型A,而目前正在使用的针对全体用户的推荐模型是B。在正式上线之前,工程师们希望通过A/B测试来验证新推荐模型的效果。下面有三种实验组和对照组的划分方法,请指出哪种划分方法是正确的?

  1. 根据user_id(user_id完全随机生成)个位数的奇偶性将用户划分为实验组和对照组,对实验组施以推荐模型A,对照组施以推荐模型B;
    2.将user_id个位数为奇数且为美国用户的作为实验组,其余用户为对照组;
  2. 将user_id个位数为奇数且为美国用户的作为实验组,user_id个位数为偶数的用户作为对照组。

解答:上述3种A/B测试的划分方法都不正确。方法1没有区分是否为美国用户,实验组和对照组的实验结果均有稀释;方法2的实验组选取无误,并将其余所有用户划分为对照组,导致对照组的结果被稀释;方法3的对照组存在偏差。正确的做法是将所有美国用户根据user_id个位数划分为试验组合对照组,分别施以模型A和B,才能够验证模型A的效果。

五、模型评估的方法

在机器学习中,我们通常把样本分为训练集和测试集,训练集用于训练模型,测试集用于评估模型。在样本划分和模型验证的过程中,存在着不同的抽样方法和验证方法。本小节主要考察面试者是否熟知这些方法及其优缺点、是否能够在不同问题中挑选合适的评估方法。

  • ★★☆☆☆ 在模型评估过程中,有哪些主要的验证方法,它们的优缺点是什么?
  • Holdout检验

Holdout 检验是最简单也是最直接的验证方法,它将原始的样本集合随机划分成训练集和验证集两部分。比方说,对于一个点击率预测模型,我们把样本按照70%~30% 的比例分成两部分,70% 的样本用于模型训练;30% 的样本用于模型验证,包括绘制ROC曲线、计算精确率和召回率等指标来评估模型性能。
Holdout 检验的缺点很明显,即在验证集上计算出来的最后评估指标与原始分组有很大关系。为了消除随机性,研究者们引入了“交叉检验”的思想。

  • 交叉检验

k-fold交叉验证:首先将全部样本划分成k个大小相等的样本子集;依次遍历这k个子集,每次把当前子集作为验证集,其余所有子集作为训练集,进行模型的训练和评估;最后把k次评估指标的平均值作为最终的评估指标。在实际实验中,k经常取10。
留一验证:每次留下1个样本作为验证集,其余所有样本作为测试集。样本总数为n,依次对n个样本进行遍历,进行n次验证,再将评估指标求平均值得到最终的评估指标。在样本总数较多的情况下,留一验证法的时间开销极大。事实上,留一验证是留p验证的特例。留p验证是每次留下p个样本作为验证集,而从n个元素中选择p个元素有 C n p C^p_n Cnp种可能,因此它的时间开销更是远远高于留一验证,故而很少在实际工程中被应用。

  • 自助法

不管是Holdout检验还是交叉检验,都是基于划分训练集和测试集的方法进行模型评估的。然而,当样本规模比较小时,将样本集进行划分会让训练集进一步减小,这可能会影响模型训练效果。有没有能维持训练集样本规模的验证方法呢?自助法可以比较好地解决这个问题。
自助法是基于自助采样法的检验方法。对于总数为n的样本集合,进行n次有放回的随机抽样,得到大小为n的训练集。n次采样过程中,有的样本会被重复采样,有的样本没有被抽出过,将这些没有被抽出的样本作为验证集,进行模型验证,这就是自助法的验证过程。

  • ★★★☆☆ 在自助法的采样过程中,对n个样本进行n次自助抽样,当n趋于无穷大时,最终有多少数据从未被选择过?

36.8%
一个样本在一次抽样过程中未被抽中的概率为 ( 1 − 1 n ) (1-\frac1n) (1n1),n次抽样均未抽中的概率为 ( 1 − 1 n ) n (1-\frac1n)^n (1n1)n。当n趋于无穷大时,概率为 lim ⁡ n → ∞ ( 1 − 1 n ) n \lim_{n\rightarrow\infty}(1-\frac1n)^n limn(1n1)n
根据重要极限, lim ⁡ n → ∞ ( 1 − 1 n ) n = e \lim_{n\rightarrow\infty}(1-\frac1n)^n=e limn(1n1)n=e,所以有 lim ⁡ n → ∞ ( 1 − 1 n ) n = lim ⁡ n → ∞ 1 ( 1 + 1 n − 1 ) n = lim ⁡ n → ∞ 1 ( 1 + 1 n − 1 ) n − 1 ⋅ lim ⁡ n → ∞ 1 ( 1 + 1 n − 1 ) = 1 e ≈ 0.368 \lim_{n\rightarrow\infty}(1-\frac1n)^n=\lim_{n\rightarrow\infty}\frac1{(1+\frac1{n-1})^n}\\=\lim_{n\rightarrow\infty}\frac1{(1+\frac1{n-1})^{n-1}}\cdot \lim_{n\rightarrow\infty}\frac1{(1+\frac1{n-1})}\\=\frac1e\approx0.368 nlim(1n1)n=nlim(1+n11)n1=nlim(1+n11)n11nlim(1+n11)1=e10.368

六、超参数调优

对于很多算法工程师来说,超参数调优是件非常头疼的事。除了根据经验设定所谓的“合理值”之外,一般很难找到合理的方法去寻找超参数的最优取值。而与此同时,超参数对于模型效果的影响又至关重要。有没有一些可行的办法去进行超参数的调优呢?

  • ★★★☆☆ 超参数有哪些调优方法?

为了进行超参数调优,我们一般会采用网格搜索、随机搜索、贝叶斯优化等算法。在具体介绍算法之前,需要明确超参数搜索算法一般包括哪几个要素。一是目标函数,即算法需要最大化/最小化的目标;二是搜索范围,一般通过上限和下限来确定;三是算法的其他参数,如搜索步长。

  • 网格搜索

网格搜索可能是最简单、应用最广泛的超参数搜索算法,它通过查找搜索范围内的所有的点来确定最优值。如果采用较大的搜索范围以及较小的步长,网格搜索有很大概率找到全局最优值。然而,这种搜索方案十分消耗计算资源和时间,特别是需要调优的超参数比较多的时候。因此,在实际应用中,网格搜索法一般会先使用较广的搜索范围和较大的步长,来寻找全局最优值可能的位置;然后会逐渐缩小搜索范围和步长,来寻找更精确的最优值。这种操作方案可以降低所需的时间和计算量,但由于目标函数一般是非凸的,所以很可能会错过全局最优值。

  • 随机搜索

随机搜索的思想与网格搜索比较相似,只是不再测试上界和下界之间的所有值,而是在搜索范围中随机选取样本点。它的理论依据是,如果样本点集足够大,那么通过随机采样也能大概率地找到全局最优值,或其近似值。随机搜索一般会比网格搜索要快一些,但是和网格搜索的快速版一样,它的结果也是没法保证的。

  • 贝叶斯优化算法

叶斯优化算法在寻找最优最值参数时,采用了与网格搜索、随机搜索完全不同的方法。网格搜索和随机搜索在测试一个新点时,会忽略前一个点的信息;而贝叶斯优化算法则充分利用了之前的信息。贝叶斯优化算法通过对目标函数形状进行学习,找到使目标函数向全局最优值提升的参数。具体来说,它学习目标函数形状的方法是,首先根据先验分布,假设一个搜集函数;然后,每一次使用新的采样点来测试目标函数时,利用这个信息来更新目标函数的先验分布;最后,算法测试由后验分布给出的全局最值最可能出现的位置的点。对于贝叶斯优化算法,有一个需要注意的地方,一旦找到了一个局部最优值,它会在该区域不断采样,所以很容易陷入局部最优值。为了弥补这个缺陷,贝叶斯优化算法会在探索和利用之间找到一个平衡点,“探索”就是在还未取样的区域获取采样点;而“利用”则是根据后验分布在最可能出现全局最值的区域进行采样。

七、过拟合与欠拟合

在模型评估与调整的过程中,我们往往会遇到“过拟合”或“欠拟合”的情况。如何有效地识别“过拟合”和“欠拟合”现象,并有针对性地进行模型调整,是不断改进机器学习模型的关键。特别是在实际项目中,采用多种方法、从多个角度降低“过拟合”和“欠拟合”的风险是算法工程师应当具备的领域知识。

  • ★☆☆☆☆ 在模型评估过程中,过拟合和欠拟合具体是指什么现象?

过拟合是指模型对于训练数据拟合呈过当的情况,反映到评估指标上,就是模型在训练集上的表现很好,但在测试集和新数据上的表现较差。欠拟合指的是模型在训练和预测时表现都不好的情况。
出现过拟合的情况,设计出来的模型过于复杂,把噪声数据的特征也学习到模型中,导致模型泛化能力下降,在后期应用过程中很容易输出错误的预测结果。

  • 降低“过拟合”风险的方法
  1. 从数据入手,获得更多的训练数据。使用更多的训练数据是解决过拟合问题最有效的手段,因为更多的样本能够让模型学习到更多更有效的特征,减小噪声的影响。当然,直接增加实验数据一般是很困难的,但是可以通过一定的规则来扩充训练数据。比如,在图像分类的问题上,可以通过图像的平移、旋转、缩放等方式扩充数据;更进一步地,可以使用生成式对抗网络来合成大量的新训练数据。
  2. 降低模型复杂度。在数据较少时,模型过于复杂是产生过拟合的主要因素,适当降低模型复杂度可以避免模型拟合过多的采样噪声。例如,在神经网络模型中减少网络层数、神经元个数等;在决策树模型中降低树的深度、进行剪枝等。
  3. 正则化方法。给模型的参数加上一定的正则约束,比如将权值的大小加入到损失函数中。以 L 2 L_2 L2正则化为例: C = C 0 + λ 2 n ⋅ ∑ i w i 2 C=C_0+\frac{\lambda}{2n}\cdot\sum_iw_i^2 C=C0+2nλiwi2这样,在优化原来的目标函数 C 0 C_0 C0的同时,也能避免权值过大带来的过拟合风险。
  4. 集成学习方法。集成学习是把多个模型集成在一起,来降低单一模型的过拟合风险,如Bagging方法。
  • 降低“欠拟合”风险的方法
  1. 添加新特征。当特征不足或者现有特征与样本标签的相关性不强时,模型容易出现欠拟合。通过挖掘“上下文特征”“ID类特征”“组合特征”等新的特征,往往能够取得更好的效果。在深度学习潮流中,有很多模型可以帮助完成特征工程,如因子分解机、梯度提升决策树、Deep-crossing等都可以成为丰富特征的方法。
  2. 增加模型复杂度。简单模型的学习能力较差,通过增加模型的复杂度可以使模型拥有更强的拟合能力。例如,在线性模型中添加高次项,在神经网络模型中增加网络层数或神经元个数等。
  3. 减小正则化系数。正则化是用来防止过拟合的,但当模型出现欠拟合现象时,则需要有针对性地减小正则化系数。

下一章传送门:《百面机器学习》读书笔记(三)-经典算法

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值