【论文泛读24】如何为文本分类微调BERT?

该博客探讨了如何有效微调BERT模型以优化文本分类任务,通过实验提出了一种通用解决方案,包括任务内预训练、多任务微调和目标任务微调,并在多个数据集上取得最新先进结果。

贴一下汇总贴:论文阅读记录

论文链接:《How to Fine-Tune BERT for Text Classification?》

一、摘要

语言模型预训练已被证明在学习通用语言表示方面是有用的。作为一种最先进的语言模型预训练模型,BERT在许多语言理解任务中取得了惊人的结果。本文通过详尽的实验研究了文本分类任务中BERT的不同微调方法,为BERT微调提供了一个通用的解决方案。最后,提出的解决方案在八个广泛研究的文本分类数据集上获得了新的最先进的结果。

二、结论

  • BERT的顶层对文本分类更有用;
  • 通过适当的逐层递减学习率,BERT可以克服灾难性遗忘问题;
  • 任务内和领域内的进一步预训练可以显著提高其性能;
  • 前一次多任务微调对单任务微调也有帮助,但其好处小于进一步的预训练;
  • BERT可以用小规模数据改进任务。

本文主要贡献:

  • 我们提出了一个微调预训练BERT模型的通用解决方案,它包括三个步骤:(1)在任务内训练数据或域内数据上进一步预训练BERT;(2)如果有几个相关的任务可用,可选的具有多任务学习的BERT微调;(3)为目标任务微调BERT。
  • 还研究了目标任务中BERT的微调方法,包括长文本的预处理、分层选择、分层学习率、灾难性遗忘和低级学习问题。
  • 在七个广泛研究的英文文本分类数据集和一个中文新闻分类数据集上获得了最新的结果。

三、BERT for Text Classification

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值