【论文泛读53】需要离散推理的用于阅读理解的多类型多跨度网络

本文介绍了多类型多跨度网络(MTMSN),一种针对阅读理解的神经模型,尤其擅长处理复杂答案类型和离散推理任务。MTMSN在DROP隐藏测试集上实现了79.9 F1的高分,创下了最新纪录。模型包含多类型答案预测、多跨度提取和算术表达式重排机制,以支持更现实场景的阅读理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

贴一下汇总贴:论文阅读记录

论文链接:《A Multi-Type Multi-Span Network for Reading Comprehension that Requires Discrete Reasoning》

github(不知道为啥有种感觉,可以试试复现)

一、摘要

在阅读理解和问题解答领域已经取得了迅速的进步,其中一些系统已经在某些简化的环境中实现了人文均等。但是,将这些模型应用于更现实的场景时,其性能会大大降低,例如答案涉及各种类型,多个文本字符串是正确答案或需要离散的推理能力。在本文中,我们介绍了多类型多跨度网络(MTMSN),它是一种神经阅读理解模型,该模型结合了旨在支持各种答案类型(例如,跨度,计数,否定和算术表达式)的多类型答案预测变量。使用多跨度提取方法来动态生成一个或多个文本跨度。此外,提出了一种算术表达式重排机制来对候选表达进行排序,以进一步确认预测。实验表明,我们的模型在DROP隐藏测试集上达到了79.9 F1,创建了最新的结果。

二、结论

我们介绍MTMSN,这是一个多类型、多跨度的阅读理解网络,需要对段落内容进行离散推理。我们增强了一个支持逻辑否定的多类型答案预测器,提出了一种产生多个答案的多跨度抽取方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值