用增广矩阵的秩判断N线性方程的解的个数

系数矩阵A和常数矩b阵组成的分块矩阵称增广矩阵Ab

先将增广矩阵Ab化成行最简形式,即非0行首元素都是1且该元素所在列的其他元素都是0,则非0行数即是矩阵的秩

如果R(A)<=R(Ab) 则方程无解
R(A)=R(Ab)=N时方程有唯一解 (齐次方程称无非0解)
R(A)=R(Ab)<N时方程有无穷个解 (齐次方程称有非0解)

得到的解通常是X=ΣCi * Vi + V0的形式

称 CI*Vi为基础解 是某个齐次方程的通解

V为特解 是某个非齐次方程的特解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值