系数矩阵A和常数矩b阵组成的分块矩阵称增广矩阵Ab
先将增广矩阵Ab化成行最简形式,即非0行首元素都是1且该元素所在列的其他元素都是0,则非0行数即是矩阵的秩
如果R(A)<=R(Ab) 则方程无解
R(A)=R(Ab)=N时方程有唯一解 (齐次方程称无非0解)
R(A)=R(Ab)<N时方程有无穷个解 (齐次方程称有非0解)
得到的解通常是X=ΣCi * Vi + V0的形式
称 CI*Vi为基础解 是某个齐次方程的通解
称 V为特解 是某个非齐次方程的特解
系数矩阵A和常数矩b阵组成的分块矩阵称增广矩阵Ab
先将增广矩阵Ab化成行最简形式,即非0行首元素都是1且该元素所在列的其他元素都是0,则非0行数即是矩阵的秩
如果R(A)<=R(Ab) 则方程无解
R(A)=R(Ab)=N时方程有唯一解 (齐次方程称无非0解)
R(A)=R(Ab)<N时方程有无穷个解 (齐次方程称有非0解)
得到的解通常是X=ΣCi * Vi + V0的形式
称 CI*Vi为基础解 是某个齐次方程的通解
称 V为特解 是某个非齐次方程的特解