
本文主要介绍线性方程组求解与解的结构问题进行了讨论,对于线性方程组的基本定义和定理,大家务必要深刻了解,在了解的基础上,大家一定要去练习基本习题,加深印象,同时这一板块,也是我们考研中的重点问题,希望大家重视.
设线性方程组为
引入向量
于是线性方程组(1)可以改写成向量方程
显然可知,线性方程组(1)有解的充分必要条件为向量
定理1.(线性方程组有解判别定理)线性方程组(1)有解的充分必要条件为它的系数矩阵秩等于增广矩阵的秩.
定理2.数域K上n元线性方程组(1)有解时,如果它的系数矩阵A的秩等于n,那么方程组(1)有唯一解,如果A的秩小于n,那么方程组有无穷多个解.
推论1.数域K上n元齐次线性方程组,有非零解的充分必要条件为:它的系数矩阵的秩小于未知量的个数n.
定理3.数域K上n元齐次线性方程组的解空间W的维数为