欧拉函数、欧拉定理、扩展欧拉定理、费马小定理、欧拉降幂公式

欧拉函数:欧拉函数是小于x的整数中与x互质的数的个数,一般用φ(x)表示。特殊的,φ(1)=1。

(1)   p^k型欧拉函数:

若N是质数p(即N=p), φ(n)= φ(p)=p-p^(k-1)=p-1。

若N是质数p的k次幂(即N=p^k),φ(n)=p^k-p^(k-1)=(p-1)p^(k-1)。

(2)mn型欧拉函数

设n为正整数,以φ(n)表示不超过n且与n互素的正整数的个数,称为n的欧拉函数值。若m,n互质,φ(mn)=(m-1)(n-1)=φ(m)φ(n)。

(3)特殊性质:

若n为奇数时,φ(2n)=φ(n)。

对于任何两个互质 的正整数a,n(n>2)有:a^φ(n)=1 mod n (恒等于)此公式即 欧拉定理

当n=p 且 a与素数p互质(即:gcd(a,p)=1)则上式有: a^(p-1)=1 mod n (恒等于)此公式即 费马小定理

\varphi (p)=p-1

\varphi(p^k)=p^{k}-p^{k-1}=p^{k-1}

\varphi(p*q)=\varphi(p)*\varphi(q)

\varphi(i*p_{j})=\varphi(i)*p_{j}

代码如下:

int Euler(int n)
{
    int ret = n;
    for(int i = 2;i * i <= n;++i)
    {
        if(n % i == 0)
        {
            ret = ret - ret / i;//减去小于n里i的倍数
            while(n % i == 0)
                n /= i;//求剩下的质因子的乘积
        }
    }
    if(n > 1)
        ret = ret - ret / n;//处理最后一个质因子
    return ret;
}

线性筛欧拉函数:

void getphi(){
    phi[1]=1;
	for(int i=2;i<=n;i++){
		if(!check[i]){
			phi[i]=i-1;
			prim[++tot]=i;
		}
		for(int j=1;j<=tot;j++){
			int x=prim[j];
			if(i*x>n) break;
			check[i*x]=1;
			if(i%x==0){
				phi[i*x]=phi[i]*x;
				break;
			}
			else{
				phi[i*x]=phi[i]*phi[x];
			}
		}
	} 

}

例题:hdu1286:http://acm.hdu.edu.cn/showproblem.php?pid=1286

模板题:

#include<iostream>
using namespace std;
//欧拉函数
int Euler(int n)
{
    int ret = n;
    for(int i = 2;i * i <= n;++i)
    {
        if(n % i == 0)
        {
            ret = ret - ret / i;
            while(n % i == 0)
                n /= i;
        }
    }
    //cout<<n<<endl;
    if(n > 1)
        ret = ret - ret / n;
       // cout<<ret<<endl;
    return ret;
}
 
int main(){
	int t;
	while(cin>>t){
		while(t--){
			int x;
			cin>>x;
			cout<<Euler(x)<<endl;
		}
	}
	return 0;
}

欧拉定理:

a^{\varphi (m)}\equiv 1\left ( mod m \right )

扩展欧拉定理:

a^{c}\equiv \begin{Bmatrix} a^{cMod(\varphi (m))}& \left ( a,m \right )=1\\ a^{c}& \left ( a,m \right )\neq 1\wedge c<\varphi (m)\\ a^{cMod(\varphi (m))+\varphi (m)} & \left ( a,m \right )\neq 1\wedge c\geq \varphi (m) \end{Bmatrix}

费马小定理:

当p为质数时:a^{p-1}\equiv 1\left ( mod p \right )

 

欧拉函数应用之一:

hdu2588:http://acm.hdu.edu.cn/showproblem.php?pid=2588

思路:令s=gcd(x,n)>=m,s*a=x,s*b=n。则gcd(a,b)=1,a<=b,此处用欧拉函数,直接枚举1到根号n,求解。

ac代码:

#include<bits/stdc++.h>
using namespace std;
int Euler(int n)
{
    int ret = n;
    for(int i = 2;i * i <= n;++i)
    {
        if(n % i == 0)
        {
            ret = ret - ret / i;//减去小于n里i的倍数
            while(n % i == 0)
                n /= i;//求剩下的质因子的乘积
        }
    }
    if(n > 1)
        ret = ret - ret / n;//处理最后一个质因子
    return ret;
}
int main(){
	int t;
	while(cin>>t){
		while(t--){
			int n,m;
			cin>>n>>m;
			int ans=0;
			for(int i=1;i*i<=n;i++){
				if(n%i==0){
					if(i>=m&&i*i!=n)  ans+=Euler(n/i);
					if(n/i>=m)  ans+=Euler(i);
				}
			}
			cout<<ans<<endl;
		}
	}
	return 0;
}

 

 

 

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值