唯一分解定理及其应用

æ±è§£å¬å¼

首先要预处理求出素数

void Euler_prim(int n)
{
    //欧拉筛选法     避免上面筛选法中的重复筛选
    memset(check,false,sizeof(check));
    int tot = 0;
    for(int i = 2;i <= n;i ++)
    {
        if(!check[i]) prim[tot ++] = i;
        for(int j = 0;j < tot;j ++)    //遍历已经找到的素数
        {
            if(i * prim[j] > n) break;   //后面相乘已经超出 n 的范围,没有查找的必要了
            check[i * prim[j]] = true;    //表示这个数字不是素数
            if(i % prim[j] == 0) break;   
        }
    }
}

 再写一个快速幂取模:

int PowerMod(int a, int b, int c)
{
    int ans=1;
    a=a%c;
    while(b>0) {
        if(b%2==1)
        ans=(ans*a)%c;
        b=b/2;
        a=(a*a)%c;
    }
    return ans;
}

再进行分解:

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int mod=1e9+7;
bool check[100005];
int prime[100005];     //储存第i个素数
int tot=0;
LL pow(LL a, LL n, LL p)    //快速幂 a^n % p
{
    LL ans = 1;
    while(n)
    {
        if(n & 1) ans = ans * a % p;          //若不取模就去掉p
        a = a * a % p;
        n >>= 1;
    }
    return ans;
}
void getprime(int n)
{
    memset(check, 0, sizeof(check));  // 标记数组初始化,初始均为 0
    tot = 0;  // tot 初始为 0,用来记录质数总个数
    for (int i = 2; i <= n; ++i) {  // 从 2 开始枚举
        if (!check[i]) {  // 如果 i 没有被划去,则 i 为质数,加入质数表中
            prime[++tot] = i;
        }
        for (int j = 1; j <= tot; ++j) {  // 划去 i 与所有已筛出的质数的乘积
            if (i * prime[j] > n) {  // 判断合数是否在区间内
                break;
            }
            check[i * prime[j]] = 1;  // 划去在区间内的合数
            if (i % prime[j] == 0) {  // 保证合数只被其最小的质因子划去,提高筛选效率
                break;
            }
        }
    }
}
void getans(int n)   
{
    int a[10000],b[100005],c[100005],cnt=0,cnt2=0,t;
    t=n;
    for(int i=1;prime[i]*prime[i]<=n;i++)
    {
        if(n%prime[i]==0)
        {
            a[cnt]=prime[i];
            while(n%prime[i]==0)
            {
                c[cnt2++]=prime[i];
                b[cnt]++;
                n/=prime[i];
            }
            cnt++;
        }
    }
    if(n!=1)
    {
        a[cnt]=n;
        b[cnt]=1;
        c[cnt2]=n;
        cnt2++;
        cnt++;
    }
    int cnt_factor=1;             //因数的个数
    long long sum_factor=1;       //全部因数之和
    for(int i=0;i<cnt;i++)
        cnt_factor*=(b[i]+1);
    cout<<cnt_factor<<endl;           //因数的个数
    for(int i=0;i<cnt;i++)
    {
        LL cur=0;
        for(int j=0;j<=b[i];j++)
        {
            cur+=pow(a[i],j,mod);
        }
        sum_factor*=cur;
    }
    cout<<sum_factor-t<<endl;       //全部因数之和((除了n本身) 
    for(int i=0;i<cnt;i++)              //幂指形式表示
        cout<<a[i]<<"^"<<b[i]<<" ";
    cout<<endl;
    for(int i=0;i<cnt2;i++)         //连乘形式表示
        cout<<c[i]<<" ";
    cout<<endl;
}
int main()
{
    int n;
    getprime(10000);
    scanf("%d",&n);
    getans(n);
    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在数论中,唯一分解定理(Unique Factorization Theorem)也被称为质因数分解定理,它指出每个大于1的整数都可以唯一地表示为质数的乘积。在Python中,我们可以使用以下方法来实现唯一分解定理: 1. 首先,我们可以编写一个函数来判断一个数是否为质数。一个简单的方法是从2开始,逐个判断该数是否能被小于它的数整除,如果能整除,则不是质数。 2. 接下来,我们可以编写一个函数来获取一个数的所有质因数。我们可以从2开始,逐个判断该数是否能被2整除,如果可以,则将2添加到质因数列表中,并将该数除以2。然后再继续判断是否能被3整除,如果可以,则将3添加到质因数列表中,并将该数除以3。依此类推,直到该数变为1为止。 3. 最后,我们可以编写一个函数来实现唯一分解定理。该函数将调用上述获取质因数的函数,并将质因数列表返回。 下面是一个示例代码: ```python def is_prime(n): if n <= 1: return False for i in range(2, int(n**0.5) + 1): if n % i == 0: return False return True def get_prime_factors(n): factors = [] i = 2 while n > 1: if n % i == 0: factors.append(i) n //= i else: i += 1 return factors def unique_factorization(n): if n <= 1: return [] prime_factors = get_prime_factors(n) return prime_factors # 示例用法 number = 36 factors = unique_factorization(number) print(f"唯一分解定理:{number} = {' × '.join(map(str, factors))}") ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值