社科研究中的问卷设计详解——结合论文具体例子来看


序:
本文撰写过程参考多方资料,力求准确,若有疏漏,欢迎联系我:897354667@qq.conm
本文最终汇总整理如下一个思维导图:
在这里插入图片描述

参考的文献和网站等资源:

spss官方百度账号
在这里插入图片描述

MBA智库百科

参考的up主的讲解

B站北师大钱婧老师、

调查问卷设计,工具 + 保姆级教程【钱婧】】

在这里插入图片描述
第一步 让他知道是干啥的,又不能完全告诉全貌
在这里插入图片描述

参考B站up除草姬:

【社会科学研究中的问卷设计流程详解】
在这里插入图片描述
在这里插入图片描述
匿名自填式问卷,在设计隐私方面更可靠。
缺点是 设计不到位会降低信效度。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

参考的书籍

《教育研究 定性 定量和混合方法》
在这里插入图片描述

查阅过程中给自己补充的问卷基础知识

李克特量表
语义差异量表
数值分配量表
瑟斯顿量表
加特曼量表
指数的介绍
【B站:问卷及量表设计中的探索性因子分析详解】

cssci一篇关于兴趣问卷的案例分析

论文:

初中生数学学习兴趣问卷编制与现状调查 吴洪艳 1,刘晓琳 2

看懂这篇论文需要补充的知识点

信度计算公式
了解即可,SPSS会自动帮你算。

信度系数汇总

共同性与因素负荷量

这个知乎链接介绍的很详细,也包含了具体的SPSS中操作。可以重点参考。对小白也很友好

共同性(communalities):因子能解释共同特质、属性的变异量,则保留。
因素负荷量(factor loading):因子与总分变量关系的程度,越高越紧密,同质性越高。
一般而言,共同性值若低于0.2(因素负荷量小于0.45),表示因子与总分变量直接的关系较弱,可删除。
可以看到论文里面也是做了处理:

根据共同性与因素负荷分析的结果,
删除共同性<0.20、因素负荷量<0.454 个条目.
项目分析共删除 5 个条目,保留 51 个条目参与探索性因素分析.

探索性因素分析
推荐B站【问卷及量表设计中的探索性因子分析详解】以下为截图笔记
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
特征根越大,说明 公共因子越重要。
在这里插入图片描述
这里的λ表示的是特征根。n是样本数量。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
检验假设,比较重要,用到再看
在这里插入图片描述

在这里插入图片描述
主成分分析和
公因子分析
在这里插入图片描述
公共因素确定
在这里插入图片描述
特征根大于一的比例,大概如上。

因素旋转

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
因子矩阵解释步骤
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

潜变量比较权威的介绍
心理学论文可以只做观察变量不做潜变量吗? - Rowlin的回答 - 知乎

极大似然估计MLR
累积方差贡献率
验证性因子分析节点!较为全面
CSDN 验证性因子分析博客

SPSS和Mplus中如何操作

具体操作的讲解

问卷及量表设计中的探索性因子分析详解】 【精准空降到 11:15】

Mplus软件探索性因素分析操作
回答了为啥作者后面 不用spss来进行探索性因素分析的原因。
对于参考的论文也解释清楚了。

Mplus更适合探索性因素分析。

前面提到,在SPSS中,最常用的因素提取方法为主成分法 (Principal Components Analysis, PCA)。然而事实上,主成分分析和因素分析是有一定差别的。

也给出了具体的操作步骤。
这些是Mplus相对于SPSS来说的一些优势
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东方-教育技术博主

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值