验证性因子分析(一)

一、效度分析

倪宗瓒主编的《医学统计学》一书中指出:

一般来说,凡是通过测量工具得到的结果,无论是通过测定仪器得到的硬数据(如物理测定),还是通过测定量表、考卷得到的软数据(如心里测定、考试等),均需进行信度和效度分析;在实际工作中,如果只是直接运用问卷调查的结果进行分析和推断,而未对调查问卷本身进行可信度和有效度的评价分析,这就使得调查的准确性、统计分析结论的科学性以至于研究成果的质量不能不受到影响及质疑。

因此对测量工具进行效度分析以及效度汇报是十分重要的。我在学习相关的统计软件过程中,一直没有系统地了解效度分析的步骤,对于验证性因子分析,更是越学反而觉得越乱,因此系统地整理还是十分有必要的。

首先大致列出效度分析的步骤,如下:

在效度分析中,首先进行巴特利特球形检验与KMO检验,若KMO值>0.50,巴特利特球形检验统计值的显著性概率p<0.05,则适合进行因子分析,反之不适合进行因子分析。

而后判断量表是否为成熟学者量表,若是,则只需要进行CFA(验证性因子分析),反之,需要首先进行EFA(探索性因子分析)而后再进行CFA(验证性因子分析)。

本文的重点是对验证性因子分析作出系统的阐述。

二、验证性因子分析

总体而言,验证性因子分析的流程会依据量表中维度与题项的情况而调整,但是万变不离其中的是:先总后分,总分都要!!!

一般常用的效度指标包括结构效度、聚合效度与区分效度。验证性因子分析主要展示问卷的聚合效度和区分效度与适配度指标。

  • 结构效度(探索性因子分析)

一般采用三个标准进行结构效度的判断:公共因子的累积方差贡献率至少在40%以上;每一个题项都应在其对应的维度上有较高的载荷值(大于0.40),而对其他维度的载荷值应该较低;公因子方差均应大于0.40。

  • 聚合效度

聚合效度是指运用不同测量方法测定同一目标时,测量结果的相似程度。聚合效度的常用指标是AVE和CR,当

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笨笨脑袋瓜子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值