复变函数和积分变换(Integral Transform)


复变函数和积分变换(Complex Function I)
复变函数和积分变换(Complex Function II)
复变函数和积分变换(Integral Transform)


参考文献:
mooc国防科技大学《复变函数》
王忠仁、张静《工程数学:复变函数和积分变换》
焦红伟、尹景本《复变函数与积分变换》
梁昆淼《数学物理方法》

Fourier 变换

所谓积分变换,就是把某函数类 A 中的函数 f ( t ) f(t) f(t) 乘上一个确定的二元函数 k ( t , p ) k(t, p) k(t,p),然后计算积分 F ( p ) = ∫ k ( t , p ) f ( t ) d t \displaystyle F(p)=\int k(t, p)f(t)dt F(p)=k(t,p)f(t)dt,这样变成另一个函数类 B 中的函数 F ( p ) F(p) F(p) 。这里二元函数 k ( t , p ) k(t, p) k(t,p)是一个确定的二元函数,通常称为该积分变换的核函数(kernel function) f ( t ) f(t) f(t) 称为象原函数(original image function), F ( p ) F(p) F(p) 称为 f ( t ) f(t) f(t)的象函数(image function)。如果取积分核 k ( ω , t ) = e − i ω t k(ω,t)=e^{-iωt} k(ω,t)=eiωt,就是著名的Fourier 变换。

Fourier 变换

  • 周期函数的Fourier 级数:设 f T ( t ) f_T(t) fT(t) 是以T为周期的实值函数,在区间 [ − T 2 , T 2 ] [-\frac{T}{2},\frac{T}{2}] [2T,2T]上满足狄利克雷(Dirichlet)条件:
    (1)连续或只有有限个第一类间断点;
    (2)只有有限个极值点
    f T ( t ) f_T(t) fT(t)在连续点处可以展开成Fourier 级数: f T ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n ω 0 t + b n sin ⁡ n ω 0 t ) (F0) \displaystyle f_T(t)=\dfrac{a_0}{2}+\sum_{n=1}^{∞}(a_n\cos nω_0 t+b_n\sin nω_0 t) \tag{F0} fT(t)=2a0+n=1(ancosnω0t+bnsinnω0t)(F0) 在间断点处,上式左端为 1 2 [ f T ( t − ) + f T ( t + ) ] \frac{1}{2}[f_T(t^-)+f_T(t^+)] 21[fT(t)+fT(t+)]
    其中 ω 0 = 2 π / T a n = 2 T ∫ − T / 2 T / 2 f T ( t ) cos ⁡ n ω 0 t d t ( n = 0 , 1 , 2 , ⋯   ) b n = 2 T ∫ − T / 2 T / 2 f T ( t ) sin ⁡ n ω 0 t d t ( n = 1 , 2 , 3 , ⋯   ) \displaystyle ω_0=2\pi/T \\ a_n=\frac 2T \int_{-T/2}^{T/2}f_T(t)\cos nω_0 t\text{d}t \quad(n=0,1,2,\cdots) \\ b_n=\frac 2T \int_{-T/2}^{T/2}f_T(t)\sin nω_0 t\text{d}t \quad(n=1,2,3,\cdots) ω0=2π/Tan=T2T/2T/2fT(t)cosnω0tdt(n=0,1,2,)bn=T2T/2T/2fT(t)sinnω0tdt(n=1,2,3,)
    式 (F0) 称为Fourier 级数的三角形式。

  • 奇函数和偶函数的傅里叶展开
    若周期函数 f T ( t ) f_T(t) fT(t) 是奇函数,由展开式知 a 0 a_0 a0 a n a_n an 均为零,展开式称为
    f T ( t ) = ∑ n = 1 ∞ b n sin ⁡ n ω 0 t \displaystyle f_T(t)=\sum_{n=1}^{∞}b_n\sin nω_0 t fT(t)=n=1bnsinnω0t 称为傅里叶正弦级数
    若周期函数 f T ( t ) f_T(t) fT(t) 是偶函数,由展开式知 b n b_n bn 均为零,展开式称为
    f T ( t ) = a 0 2 + ∑ n = 1 ∞ a n cos ⁡ n ω 0 t \displaystyle f_T(t)=\dfrac{a_0}{2}+\sum_{n=1}^{∞}a_n\cos nω_0 t fT(t)=2a0+n=1ancosnω0t 称为傅里叶余弦级数

  • Fourier 级数的指数形式:利用欧拉公式 cos ⁡ θ = e i θ + e − i θ 2 , sin ⁡ θ = e i θ − e − i θ 2 i \cosθ=\dfrac{e^{iθ}+e^{-iθ}}{2},\sinθ=\dfrac{e^{iθ}-e^{-iθ}}{2i} cosθ=2eiθ+eiθ,sinθ=2ieiθeiθ 将Fourier 级数转化为复指数形式, f T ( t ) = c 0 + ∑ n = 1 ∞ ( c n e i n ω 0 t + c − n e − i n ω 0 t ) = ∑ n = − ∞ ∞ c n e i n ω 0 t (F1) \displaystyle f_T(t)=c_0+\sum_{n=1}^{∞}(c_ne^{inω_0 t}+c_{-n}e^{-inω_0 t})=\sum_{n=-∞}^{∞}c_ne^{inω_0 t} \tag{F1} fT(t)=c0+n=1(cneinω0t+cneinω0t)=n=cneinω0t(F1) 其中 c n = 1 T ∫ − T / 2 T / 2 f T ( t ) e − i n ω 0 t d t ( n = 0 , ± 1 , ± 2 , ⋯   ) (F2) \displaystyle c_n=\dfrac1T\int^{T/2}_{-T/2}f_T(t)e^{-inω_0 t}\text{d}t\quad(n=0,\pm1,\pm2,\cdots)\tag{F2} cn=T1T/2T/2fT(t)einω0tdt(n=0,±1,±2,)(F2) c n c_n cn a n , b n a_n,b_n an,bn的关系可知
    { c n = c − n = 1 2 a n 2 + b n 2 = 1 2 A n arg ⁡ c n = − arg ⁡ c − n = θ n ∣ c 0 ∣ = A 0 \begin{cases} c_n=c_{-n}=\frac{1}{2}\sqrt{a_n^2+b_n^2}=\frac{1}{2}A_n \\ \arg c_n=-\arg c_{-n}=θ_n \\ |c_0|=A_0 \end{cases} cn=cn=21an2+bn2 =21Anargcn=argcn=θnc0=A0

  • Fourier 级数的物理含义
    针对Fourier 级数的三角形式 (F0) ,取 A 0 = a 0 / 2 A_0=a_0/2 A0=a0/2,令 A n = a n 2 + b n 2 , cos ⁡ θ n = a n / A n , sin ⁡ θ n = − b n / A n A_n=\sqrt{a_n^2+b_n^2},\cosθ_n=a_n/A_n,\sinθ_n=-b_n/A_n An=an2+bn2 ,cosθn=an/An,sinθn=bn/An,则(F0)化为
    f T ( t ) = A 0 + ∑ n = 1 ∞ A n ( cos ⁡ θ n cos ⁡ n ω 0 t + sin ⁡ θ n sin ⁡ n ω 0 t ) = A 0 + ∑ n = 1 ∞ A n cos ⁡ ( n ω 0 t + θ n ) \begin{aligned} \displaystyle f_T(t)&=A_0+\sum_{n=1}^{∞}A_n(\cosθ_n\cos nω_0 t+\sinθ_n\sin nω_0 t) \\ &=A_0+\sum_{n=1}^{∞}A_n\cos(nω_0 t+θ_n) \end{aligned} fT(t)=A0+n=1An(cosθncosnω0t+sinθnsinnω0t)=A0+n=1Ancos(nω0t+θn)
    关系图
    (1) 上式表明,周期信号可以分解为一系列固定频率的简谐波之和,这些简谐波的(角) 频率(frequency) 为一个基频(fundamental frequency) ω 0 ω_0 ω0的倍数。
    振幅(amplitude) A n A_n An 反映了在信号 f T ( t ) f_T(t) fT(t) 中频率为 n ω 0 nω_0 nω0的简谐波所占有的份额;
    相位(phase) n ω 0 t + θ n nω_0 t+θ_n nω0t+θn反映了在信号 f T ( t ) f_T(t) fT(t) 中频率为 n ω 0 nω_0 nω0的简谐波沿时间轴移动的大小,初相位(Initial Phase) θ n θ_n θn
    A 0 A_0 A0表示周期信号在一个周期内的平均值,也叫 直流分量(DC component) ∣ A 0 ∣ |A_0| A0称为直流分量的振幅。
    (2) 对于Fourier 级数的复指数形式,我们不难看出 c n c_n cn作为复数,其模和辐角恰好反应了第 n次谐波的振幅和初相位, c n c_n cn是离散频率 n ω 0 nω_0 nω0的函数,描述了各次谐波的振幅和初相位随离散频率变化的分布情况。称 c n c_n cn f T ( t ) f_T(t) fT(t)的离散频谱(spectrum) ∣ c n ∣ |c_n| cn为离散振幅谱(amplitude spectrum) arg ⁡ c n \arg c_n argcn为离散相位谱(phase spectrum)

  • 非周期函数的Fourier 变换
    上面研究的是周期函数,事实上对于一个非周期函数 f ( t ) f(t) f(t) 可以看成是一个周期为 T的函数 f T ( t ) f_T(t) fT(t) T → + ∞ T\to +∞ T+时转化而来。
    由Fourier 级数式(F1)和式(F2)有 f ( t ) = lim ⁡ T → + ∞ ∑ n = − ∞ ∞ [ 1 T ∫ − T / 2 T / 2 f T ( τ ) e − i n ω 0 τ d τ ] e i n ω 0 t \displaystyle f(t)=\lim\limits_{T\to +∞}\sum_{n=-∞}^{∞}[\dfrac1T\int^{T/2}_{-T/2}f_T(τ)e^{-inω_0 τ}\text{d}τ]e^{inω_0 t} f(t)=T+limn=[T1T/2T/2fT(τ)einω0τdτ]einω0t
    ω n = n ω 0 ω_n=nω_0 ωn=nω0,间隔 ω 0 = Δ ω ω_0=Δω ω0=Δω,当n 取一切整数时, ω n ω_n ωn 所对应的点便均匀地分布在整个数轴上,并由 T = 2 π ω 0 = 2 π Δ ω T=\dfrac{2\pi}{ω_0}=\dfrac{2\pi}{Δω} T=ω02π=Δω2π
    f ( t ) = 1 2 π lim ⁡ Δ ω → 0 ∑ n = − ∞ ∞ [ ∫ − π ​ / Δ ω π ​ / Δ ω f T ( τ ) e − i ω n τ d τ ] e i ω n t Δ ω \displaystyle f(t)=\dfrac{1}{2\pi}\lim\limits_{Δω\to0}\sum_{n=-∞}^{∞}[\int^{π​/Δω}_{-π​/Δω}f_T(τ)e^{-iω_n τ}\text{d}τ]e^{iω_n t}Δω f(t)=2π1Δω0limn=[π/Δωπ/ΔωfT(τ)eiωnτdτ]eiωntΔω
    这是一个和式得极限,按照积分的定义,在一定条件下,上式可写成 f ( t ) = 1 2 π ∫ − ∞ + ∞ [ ∫ − ∞ + ∞ f ( τ ) e − i ω τ d τ ] e i ω t d ω (F3) \displaystyle f(t)=\dfrac{1}{2\pi}\int_{-∞}^{+∞}[\int^{+∞}_{-∞}f(τ)e^{-iω τ}\text{d}τ]e^{iω t}\text{d}ω \tag{F3} f(t)=2π1+[+f(τ)eiωτdτ]eiωtdω(F3) 这个公式称为函数 f ( t ) f(t) f(t)Fourier 积分公式。应该指出,上式只是由式(F1)的右端从形式上推出来的,是不严格的.。至于一个非周期函数 f ( t ) f(t) f(t)在什么条件下,可以用Fourier 积分公式表示,有下面的定理。
    Fourier 积分定理:若 f ( t ) f(t) f(t) R \R R上满足:
    (1) 在任一有限区间上满足狄利克雷(Dirichlet)条件;
    (2) 在无限区间 ( − ∞ , + ∞ ) (-∞,+∞) (,+)上绝对可积 ( 即 ∫ − ∞ + ∞ ∣ f ( t ) ∣ d t \int_{-∞}^{+∞}|f (t)| dt +f(t)dt 收敛)
    则有(F3)式成立
    在间断点处,(F3)式左端为 1 2 [ f ( t − ) + f ( t + ) ] \frac{1}{2}[f(t^-)+f(t^+)] 21[f(t)+f(t+)]
    Fourier 变换:如果函数 f ( t ) f(t) f(t)满足Fourier 积分定理,由式(F3),令 F ( ω ) = ∫ − ∞ + ∞ f ( τ ) e − i ω τ d τ (F4) \displaystyle F(ω)=\int^{+∞}_{-∞}f(τ)e^{-iω τ}\text{d}τ \tag{F4} F(ω)=+f(τ)eiωτdτ(F4) 则有 f ( t ) = 1 2 π ∫ − ∞ + ∞ F ( ω ) e i ω t d ω (F5) \displaystyle f(t)=\dfrac{1}{2\pi}\int_{-∞}^{+∞}F(ω)e^{iω t}\text{d}ω \tag{F5} f(t)=2π1+F(ω)eiωtdω(F5)
    从上面两式可以看出, f ( t ) f(t) f(t) F ( ω ) F(ω) F(ω)通过确定的积分运算可以互相转换。 F ( ω ) F(ω) F(ω)称为 f ( t ) f(t) f(t) Fourier 变换(Fourier transform),或象函数(image function),记为 F ( ω ) = F [ f ( t ) ] F(ω)=\mathcal{F}[f(t)] F(ω)=F[f(t)] f ( t ) f(t) f(t)称为 F ( ω ) F(ω) F(ω) Fourier 逆变换(inverse Fourier transform),或象原函数(original image function),记为 f ( t ) = F − 1 [ F ( ω ) ] f(t)=\mathcal{F}^{-1}[F(ω)] f(t)=F1[F(ω)] ;通常称 f ( t ) f(t) f(t) F ( ω ) F(ω) F(ω)构成一个Fourier 变换对(transform pair),记作 f ( t ) ↔ F ( ω ) f(t)\lrarr F(ω) f(t)F(ω)

  • 傅里叶正弦变换和余弦变换:和傅里叶级数的情形类似,奇函数 f ( x ) f(x) f(x) 的傅里叶变换是傅里叶正弦变换
    B ( ω ) = ∫ 0 + ∞ f ( t ) sin ⁡ ω t d t f ( t ) = 1 2 π ∫ 0 + ∞ F ( ω ) sin ⁡ ω t d ω B(ω)=\int^{+∞}_{0}f(t)\sin ωt\text{d}t \\ f(t)=\dfrac{1}{2\pi}\int_{0}^{+∞}F(ω)\sin ωt\text{d}ω B(ω)=0+f(t)sinωtdtf(t)=2π10+F(ω)sinωtdω
    偶函数 f ( t ) f(t) f(t) 的傅里叶变换是傅里叶余弦变换
    A ( ω ) = ∫ 0 + ∞ f ( t ) cos ⁡ ω t d t f ( t ) = 1 2 π ∫ 0 + ∞ F ( ω ) cos ⁡ ω t d ω A(ω)=\int^{+∞}_{0}f(t)\cos ωt\text{d}t \\ f(t)=\dfrac{1}{2\pi}\int_{0}^{+∞}F(ω)\cos ωt\text{d}ω A(ω)=0+f(t)cosωtdtf(t)=2π10+F(ω)cosωtdω

  • Fourier 变换的物理意义
    Fourier 积分公式表明非周期函数的频谱是连续取值的。
    像函数 F ( ω ) F(ω) F(ω)反映的是函数 f ( t ) f(t) f(t)中各频率分量的分布密度,它为复值函数,故可表示为 F ( ω ) = ∣ F ( ω ) ∣ e i arg ⁡ F ( ω ) F(ω)=|F(ω)|e^{i\arg F(ω)} F(ω)=F(ω)eiargF(ω)
    F ( ω ) F(ω) F(ω) f ( t ) f(t) f(t)频谱(spectrum) ∣ F ( ω ) ∣ |F(ω)| F(ω)振幅谱(amplitude spectrum) arg ⁡ F ( ω ) \arg F(ω) argF(ω)相位谱(phase spectrum)
    不难证明当 f ( t ) f(t) f(t)为实函数时, ∣ F ( ω ) ∣ |F(ω)| F(ω)为偶函数, arg ⁡ F ( ω ) \arg F(ω) argF(ω)为奇函数。

Fourier 变换的性质

  1. 线性性质 F [ α f 1 ( t ) + β f 2 ( t ) ] = α F [ f 1 ( t ) ] + β F [ f 2 ( t ) ] \mathcal{F}[αf_1(t)+βf_2(t)]=α\mathcal{F}[f_1(t)]+β\mathcal{F}[f_2(t)] F[αf1(t)+βf2(t)]=αF[f1(t)]+βF[f2(t)]

  2. 延迟性质:设 F ( ω ) = F [ f ( t ) ] F(ω)=\mathcal{F}[f(t)] F(ω)=F[f(t)],则
    F [ f ( t − t 0 ) ] = e − i ω t 0 F ( ω ) \mathcal{F}[f(t-t_0)]=e^{-iω t_0}F(ω) F[f(tt0)]=eiωt0F(ω)

  3. 位移性质:设 F ( ω ) = F [ f ( t ) ] F(ω)=\mathcal{F}[f(t)] F(ω)=F[f(t)],则
    F [ e − i ω t 0 f ( t ) ] = F ( ω − ω 0 ) \mathcal{F}[e^{-iω t_0}f(t)]=F(ω-ω_0) F[eiωt0f(t)]=F(ωω0)

  4. 伸缩性质(相似性质):设 F ( ω ) = F [ f ( t ) ] , a ≠ 0 F(ω)=\mathcal{F}[f(t)],a\neq 0 F(ω)=F[f(t)],a=0,则
    F [ f ( a t ) ] = 1 ∣ a ∣ F ( ω a ) \mathcal{F}[f(at)]=\dfrac{1}{|a|}F(\dfrac{ω}{a}) F[f(at)]=a1F(aω)

  5. 微分性质:若 lim ⁡ ∣ t ∣ → + ∞ f ( k ) ( t ) = 0 ( k = 0 , 1 , 2 , ⋯   , n − 1 ) \lim\limits_{|t|\to +\infty}f^{(k)}(t)=0(k=0,1,2,\cdots,n-1) t+limf(k)(t)=0(k=0,1,2,,n1),则
    F [ f ( n ) ( t ) ] = ( i ω ) n F [ f ( t ) ] \mathcal{F}[f^{(n)}(t)]=(iω)^n\mathcal{F}[f(t)] F[f(n)(t)]=(iω)nF[f(t)]

  6. 积分性质:设 g ( t ) = ∫ − ∞ t f ( t ) d t \displaystyle g(t)=\int_{-∞}^{t}f(t)dt g(t)=tf(t)dt,若 lim ⁡ t → + ∞ g ( t ) = 0 \lim\limits_{t\to +\infty}g(t)=0 t+limg(t)=0
    F [ g ( t ) ] = 1 i ω F [ f ( t ) ] \mathcal{F}[g(t)]=\dfrac{1}{iω}\mathcal{F}[f(t)] F[g(t)]=iω1F[f(t)]

  7. 帕赛瓦尔(Parseval)等式:设 f 1 ( t ) , f 2 ( t ) f_1(t),f_2(t) f1(t),f2(t)均为平方可积函数,即 ∫ − ∞ + ∞ ∣ f k ( t ) ∣ 2 d t < + ∞ ( k = 1 , 2 ) \displaystyle \int_{-∞}^{+∞}|f_k(t)|^2dt<+\infty(k=1,2) +fk(t)2dt<+(k=1,2)
    F 1 ( ω ) = F [ f 1 ( t ) ] , F 2 ( ω ) = F [ f 2 ( t ) ] F_1(ω)=\mathcal{F}[f_1(t)],F_2(ω)=\mathcal{F}[f_2(t)] F1(ω)=F[f1(t)],F2(ω)=F[f2(t)],则
    ∫ − ∞ + ∞ f 1 ( t ) f 2 ( t ) ‾ d t = 1 2 π ∫ − ∞ + ∞ F 1 ( ω ) F 2 ( ω ) ‾ d ω \displaystyle \int_{-∞}^{+∞}f_1(t)\overline{f_2(t)}dt=\dfrac{1}{2\pi}\int_{-∞}^{+∞}F_1(ω)\overline{F_2(ω)}dω +f1(t)f2(t)dt=2π1+F1(ω)F2(ω)dω
    特别的当 f 1 ( t ) = f 2 ( t ) = f ( t ) , F ( ω ) = F [ f ( t ) ] f_1(t)=f_2(t)=f(t),F(ω)=\mathcal{F}[f(t)] f1(t)=f2(t)=f(t),F(ω)=F[f(t)]
    ∫ − ∞ + ∞ ∣ f ( t ) ∣ 2 d t = 1 2 π ∫ − ∞ + ∞ ∣ F ( ω ) ∣ 2 d ω \displaystyle \int_{-∞}^{+∞}|f(t)|^2dt=\dfrac{1}{2\pi}\int_{-∞}^{+∞}|F(ω)|^2dω +f(t)2dt=2π1+F(ω)2dω
    平方可积函数在物理上就是能量有限的信号,上式也叫能量积分(energy integral) ∣ F ( ω ) ∣ 2 |F(ω)|^2 F(ω)2 也叫能量谱密度(energy spectrum density)

  8. 卷积定理1:设 F 1 ( ω ) = F [ f 1 ( t ) ] , F 2 ( ω ) = F [ f 2 ( t ) ] F_1(ω)=\mathcal{F}[f_1(t)],F_2(ω)=\mathcal{F}[f_2(t)] F1(ω)=F[f1(t)],F2(ω)=F[f2(t)],则有
    F [ f 1 ∗ f 2 ] = F 1 ( ω ) ⋅ F 2 ( ω ) \mathcal F[f_1*f_2]=F_1(ω)\cdot F_2(ω) F[f1f2]=F1(ω)F2(ω)
    F − 1 [ F 1 ( ω ) ⋅ F 2 ( ω ) ] = f 1 ∗ f 2 \mathcal F^{-1}[F_1(ω)\cdot F_2(ω)]=f_1*f_2 F1[F1(ω)F2(ω)]=f1f2
    F [ f 1 ⋅ f 2 ] = 1 2 π [ F 1 ( ω ) ∗ F 2 ( ω ) ] \mathcal F[f_1\cdot f_2]=\frac{1}{2\pi}[F_1(ω)*F_2(ω)] F[f1f2]=2π1[F1(ω)F2(ω)]
    F − 1 [ F 1 ( ω ) ∗ F 2 ( ω ) ] = 2 π f 1 f 2 \mathcal F^{-1}[F_1(ω)*F_2(ω)]=2\pi f_1f_2 F1[F1(ω)F2(ω)]=2πf1f2

多重傅里叶积分

以三重傅里叶积分说明,首先将三维空间的非周期函数 f ( x , y , z ) f(x,y,z) f(x,y,z) 按自变量 x x x 展开为傅里叶积分,其傅里叶变换为 F 1 ( k 1 ; y , z ) F_1(k_1;y,z) F1(k1;y,z) ,其中 y , z y,z y,z 作为参数出现。再将 F 1 ( k 1 ; y , z ) F_1(k_1;y,z) F1(k1;y,z) y y y 展开为傅里叶积分,得到 F 2 ( k 1 , k 2 ; z ) F_2(k_1,k_2;z) F2(k1,k2;z) ,最后将 F 2 ( k 1 , k 2 ; z ) F_2(k_1,k_2;z) F2(k1,k2;z) z z z 展开为傅里叶积分。综合三次展开,得到 f ( x , y , z ) f(x,y,z) f(x,y,z) 的三重傅里叶积分。
f ( x ) = 1 ( 2 π ) 3 ∭ − ∞ + ∞ F ( k 1 , k 2 , k 3 ) e i ( k 1 x + k 2 y + k 3 z ) d k 1 d k 2 d k 3 f(\mathbf x)=\frac{1}{(2\pi)^3}\iiint\limits_{-\infty}^{+\infty}F(k_1,k_2,k_3)e^{\mathrm i(k_1x+k_2y+k_3z)}dk_1dk_2dk_3 f(x)=(2π)31+F(k1,k2,k3)ei(k1x+k2y+k3z)dk1dk2dk3
F ( k 1 , k 2 , k 3 ) = ∭ − ∞ + ∞ f ( x , y , z ) e − i ( k 1 x + k 2 y + k 3 z ) d x d y d z F(k_1,k_2,k_3)=\iiint\limits_{-\infty}^{+\infty}f(x,y,z)e^{-\mathrm i(k_1x+k_2y+k_3z)}dxdydz F(k1,k2,k3)=+f(x,y,z)ei(k1x+k2y+k3z)dxdydz
引入矢量 r = ( x , y , z ) ∈ R n , k = ( k 1 , k 2 , k 3 ) \mathbf r=(x,y,z)\in\R^n,\mathbf k=(k_1,k_2,k_3) r=(x,y,z)Rn,k=(k1,k2,k3),可写为较简介的形式
F ( k ) = ∭ − ∞ + ∞ f ( r ) e − i k ⋅ x d x F(\mathbf k)=\iiint\limits_{-\infty}^{+\infty}f(\mathbf r)e^{-\mathrm i\mathbf{k\cdot x}}d\mathbf x F(k)=+f(r)eikxdx
则有
f ( r ) = 1 ( 2 π ) 3 ∭ − ∞ + ∞ F ( k ) e i k ⋅ x d k f(\mathbf r)=\frac{1}{(2\pi)^3}\iiint\limits_{-\infty}^{+\infty}F(\mathbf k)e^{\mathrm i\mathbf{k\cdot x}}d\mathbf k f(r)=(2π)31+F(k)eikxdk
其中 F ( k ) F(\mathbf k) F(k) 称为 f ( r ) f(\mathbf r) f(r)多重傅里叶变换,记为 F ( k ) = F [ f ( r ) ] F(\mathbf k)=\mathcal{F}[f(\mathbf r)] F(k)=F[f(r)] f ( r ) f(\mathbf r) f(r) 称为 F ( k ) F(\mathbf k) F(k)多重傅里叶逆变换,记为 f ( r ) = F − 1 [ F ( k ) ] f(\mathbf r)=\mathcal{F}^{-1}[F(\mathbf k)] f(r)=F1[F(k)]

δ 函数

在物理学中,常有集中于一点或一瞬时的量,如脉冲力、脉冲电压、点电荷、质点的质量。只有引入一个特殊函数来表示它们的分布密度,才有可能把这种集中的量与连续分布的量来统一处理。

  • 单位脉冲函数(Unit Impulse Function)
    <引例>:假设在原来电流为零的电路中,在 t = 0 t=0 t=0 时瞬时进入一电量为 q 0 q_0 q0的脉冲。现在确定电流强度分布 i ( t ) = d q d t i(t)=\cfrac{\mathrm dq}{\mathrm dt} i(t)=dtdq,分析可知 i ( t ) = { 0 ( t ≠ 0 ) ∞ ​ ( t = 0 ) i(t)=\begin{cases} 0&(t\neq 0) \\ ∞​&(t=0) \end{cases} i(t)={0(t=0)(t=0)
    同时需要引入积分值表示电量大小 ∫ − ∞ + ∞ i ( t ) d t = q 0 \displaystyle\int_{-∞}^{+∞}i(t)dt=q_0 +i(t)dt=q0
    为此我们引入单位脉冲函数,又称为Dirac函数或者δ函数

    定义:单位脉冲函数 δ ( t ) δ(t) δ(t) 满足
    (1) 当 t ≠ 0 t\neq 0 t=0 时, δ ( t ) = 0 δ(t)=0 δ(t)=0
    (2) ∫ − ∞ + ∞ δ ( t ) d t = 1 \displaystyle\int_{-∞}^{+∞}δ(t)dt=1 +δ(t)dt=1
    由此,引例可表示为 i ( t ) = q 0 δ ( t ) i(t)=q_0δ(t) i(t)=q0δ(t)
    delta函数
    注意
    (1) 单位脉冲函数 δ ( t ) δ(t) δ(t) 并不是经典意义下的函数,因此通常称其为广义函数(或者奇异函数)。
    (2) 它不能用常规意义下的值的对应关系来理解和使用,而总是通过它的定义和性质来使用它。
    (3) 单位脉冲函数 δ ( t ) δ(t) δ(t) 有多种定义方式,前面所给出的定义方式是由Dirac(狄拉克)给出的。

  • 单位脉冲函数其他定义方式
    构造一个在 ε ε ε 时间内激发的矩形脉冲 δ ε ( t ) δ_ε(t) δε(t),定义为
    δ ε ( t ) = { 0 ( t < 0 ) 1 / ε ​ ( 0 ⩽ t ⩽ ε ) 0 ( t > ε ) δ_ε(t)=\begin{cases} 0&(t< 0) \\ 1/ε​&(0⩽t⩽ε) \\ 0&(t>ε) \end{cases} δε(t)=01/ε0(t<0)(0tε)(t>ε)
    对于任何一个在 ( − ∞ , + ∞ ) (-∞,+∞) (,+) 上无穷次可微的函数 f ( t ) f(t) f(t) 如果满足
    lim ⁡ ε → 0 ∫ − ∞ + ∞ δ ε ( t ) f ( t ) d t = ∫ − ∞ + ∞ δ ( t ) f ( t ) d t \displaystyle\lim\limits_{ε\to 0}\int_{-∞}^{+∞}δ_ε(t)f(t)dt=\int_{-∞}^{+∞}δ(t)f(t)dt ε0lim+δε(t)f(t)dt=+δ(t)f(t)dt 则称 δ ε ( t ) δ_ε(t) δε(t)的极限为 δ ( t ) δ(t) δ(t),记为
    lim ⁡ ε → 0 δ ε ( t ) = δ ( t ) \lim\limits_{ε\to 0}δ_ε(t)=δ(t) ε0limδε(t)=δ(t)
    delat函数
    筛选性质(sifting property): 设函数 f ( t ) f(t) f(t) 是定义在 R \R R上的有界函数,且在 t = 0 t = 0 t=0 处连续,则有
    ∫ − ∞ + ∞ δ ( t ) f ( t ) d t = f ( 0 ) \displaystyle\int_{-∞}^{+∞}δ(t)f(t)dt=f(0) +δ(t)f(t)dt=f(0)
    证明:取 f ( t ) ≡ 1 f(t)\equiv1 f(t)1,则有 ∫ − ∞ + ∞ δ ( t ) d t = lim ⁡ ε → 0 ∫ 0 ε 1 ε d t = 1 \displaystyle\int_{-∞}^{+∞}δ(t)dt=\lim\limits_{ε\to 0}\int_{0}^{ε}\frac{1}{ε}dt=1 +δ(t)dt=ε0lim0εε1dt=1
    事实上 ∫ − ∞ + ∞ δ ( t ) f ( t ) d t = lim ⁡ ε → 0 ∫ − ∞ + ∞ δ ε ( t ) f ( t ) d t = lim ⁡ ε → 0 1 ε ∫ 0 ε f ( t ) d t \displaystyle\int_{-∞}^{+∞}δ(t)f(t)dt=\lim\limits_{ε\to 0}\int_{-∞}^{+∞}δ_ε(t)f(t)dt=\lim\limits_{ε\to 0}\frac{1}{ε}\int_{0}^{ε}f(t)dt +δ(t)f(t)dt=ε0lim+δε(t)f(t)dt=ε0limε10εf(t)dt
    由微分中值定理有 1 ε ∫ 0 ε f ( t ) d t = f ( θ ε ) ( 0 < θ < 1 ) \displaystyle\frac{1}{ε}\int_{0}^{ε}f(t)dt=f(θε)\quad(0<θ<1) ε10εf(t)dt=f(θε)(0<θ<1)
    从而 ∫ − ∞ + ∞ δ ( t ) f ( t ) d t = lim ⁡ ε → 0 f ( θ ε ) = f ( 0 ) \displaystyle\int_{-∞}^{+∞}δ(t)f(t)dt=\lim\limits_{ε\to 0}f(θε)=f(0) +δ(t)f(t)dt=ε0limf(θε)=f(0)

    正是因为 δ δ δ 函数并不是给出普通数值间的对应关系,因此, δ δ δ 函数也不像普通函数那样具有唯一确定的表达式,事实上凡是具有
    lim ⁡ ε → 0 ∫ − ∞ + ∞ δ ε ( t ) f ( t ) d t = f ( 0 ) \lim\limits_{ε\to 0}\int_{-∞}^{+∞}δ_ε(t)f(t)dt=f(0) ε0lim+δε(t)f(t)dt=f(0)
    性质的函数序列 δ ε ( t ) δ_ε(t) δε(t) ,或是具有
    lim ⁡ n → ∞ ∫ − ∞ + ∞ δ n ( t ) f ( t ) d t = f ( 0 ) \lim\limits_{n\to \infty}\int_{-∞}^{+∞}δ_n(t)f(t)dt=f(0) nlim+δn(t)f(t)dt=f(0)
    性质的函数序列 δ n ( t ) δ_n(t) δn(t),他们的极限都是 δ δ δ 函数,例如

  • δ函数的基本性质:(这些性质的严格证明可参阅广义函数)
    (1) δ ( t ) δ(t) δ(t) 和常数 c c c 的乘积 c δ ( t ) cδ(t) cδ(t)
    ∫ − ∞ + ∞ [ c δ ( t ) ] f ( t ) d t = ∫ − ∞ + ∞ δ ( t ) [ c f ( t ) ] d t = c f ( 0 ) \int_{-∞}^{+∞}[cδ(t)]f(t)dt=\int_{-∞}^{+∞}δ(t)[cf(t)]dt=cf(0) +[cδ(t)]f(t)dt=+δ(t)[cf(t)]dt=cf(0)
    (2) 平移变换, t → t − t 0 t\to t-t_0 ttt0
    ∫ − ∞ + ∞ δ ( t − t 0 ) f ( t ) d t = ∫ − ∞ + ∞ δ ( x ) f ( x + t 0 ) d x = f ( t 0 ) \int_{-∞}^{+∞}δ(t-t_0)f(t)dt=\int_{-∞}^{+∞}δ(x)f(x+t_0)dx=f(t_0) +δ(tt0)f(t)dt=+δ(x)f(x+t0)dx=f(t0)
    (3) 放大(或缩小)变换, t → a t ( a ≠ 0 ) t\to at \quad(a\neq 0) tat(a=0)
    ∫ − ∞ + ∞ δ ( a t ) f ( t ) d t = δ ( x ) f ( x a ) d x ∣ a ∣ = 1 ∣ a ∣ f ( 0 ) \int_{-∞}^{+∞}δ(at)f(t)dt=δ(x)f(\frac{x}{a})\frac{dx}{|a|}=\frac{1}{|a|}f(0) +δ(at)f(t)dt=δ(x)f(ax)adx=a1f(0) 由此可以得到
    δ ( a t ) = 1 ∣ a ∣ δ ( t ) ( a ≠ 0 ) δ(at)=\cfrac{1}{|a|}δ(t)\quad(a\neq 0) δ(at)=a1δ(t)(a=0)

    特别的,当 a = − 1 a=-1 a=1 时, δ ( t ) = δ ( − t ) δ(t)=δ(-t) δ(t)=δ(t) ,说明 δ ( t ) δ(t) δ(t)偶函数

    (4) δ δ δ 函数的导数 δ ′ ( t ) δ'(t) δ(t) ,对于在 t = 0 t=0 t=0 点连续并有连续导数的任意函数 f ( t ) f(t) f(t) ,应用分部积分
    ∫ − ∞ + ∞ δ ′ ( t ) f ( t ) d t = δ ( t ) f ( t ) ∣ − ∞ + ∞ − ∫ − ∞ + ∞ δ ( t ) f ′ ( t ) d t = − f ′ ( 0 ) \int_{-∞}^{+∞}δ'(t)f(t)dt=δ(t)f(t)\Big|_{-∞}^{+∞}-\int_{-∞}^{+∞}δ(t)f'(t)dt=-f'(0) +δ(t)f(t)dt=δ(t)f(t)++δ(t)f(t)dt=f(0)
    (5) δ δ δ 函数的高阶导数 δ ( n ) ( t ) δ^{(n)}(t) δ(n)(t) ,对于在 t = 0 t=0 t=0 点连续并有连续导数的任意函数 f ( t ) f(t) f(t) ,有
    ∫ − ∞ + ∞ δ ( n ) ( t ) f ( t ) d t = ( − 1 ) n f ( n ) ( 0 ) \int_{-∞}^{+∞}δ^{(n)}(t)f(t)dt=(-1)^{n}f^{(n)}(0) +δ(n)(t)f(t)dt=(1)nf(n)(0)
    (6) δ δ δ 函数与普通函数的乘积 g ( t ) δ ( t ) g(t)δ(t) g(t)δ(t)
    ∫ − ∞ + ∞ [ g ( t ) δ ( t ) ] f ( t ) d t = ∫ − ∞ + ∞ [ f ( t ) g ( t ) ] δ ( t ) d t = f ( 0 ) g ( 0 ) \int_{-∞}^{+∞}[g(t)δ(t)]f(t)dt=\int_{-∞}^{+∞}[f(t)g(t)]δ(t)dt=f(0)g(0) +[g(t)δ(t)]f(t)dt=+[f(t)g(t)]δ(t)dt=f(0)g(0)

    f ( t ) δ ( t ) = f ( 0 ) δ ( t ) f(t)δ(t)=f(0)δ(t) f(t)δ(t)=f(0)δ(t)
    例如: t δ ( t ) = 0 tδ(t)=0 tδ(t)=0

    (7) 单位阶跃函数2等于 δ δ δ 函数的积分
    u ( t ) = ∫ − ∞ t δ ( s ) d s \displaystyle u(t)=\int_{-∞}^{t}δ(s)ds u(t)=tδ(s)ds 由高数知识知, δ δ δ 函数是单位阶跃函数的导数,即
    d u ( t ) d t = δ ( t ) \dfrac{\mathrm du(t)}{\mathrm dt}=δ(t) dtdu(t)=δ(t)

    (8) δ δ δ 函数的卷积
    f ( t ) ∗ δ ( t ) = f ( t ) f(t)*δ(t)=f(t) f(t)δ(t)=f(t)
    一般的有 f ( t ) ∗ δ ( t − t 0 ) = f ( t − t 0 ) f(t)*δ(t-t_0)=f(t-t_0) f(t)δ(tt0)=f(tt0)

  • δ函数的Fourier 变换
    (1) 根据 δ δ δ 函数筛选性质可得
    F ( ω ) = F [ δ ( t ) ] = ∫ − ∞ + ∞ δ ( t ) e − i ω t d t = e − i ω t ∣ t = 0 = 1 \displaystyle F(ω)=\mathcal{F}[δ(t)]=\int^{+∞}_{-∞}δ(t)e^{-iω t}\text{d}t=e^{-iω t}|_{t=0}=1 F(ω)=F[δ(t)]=+δ(t)eiωtdt=eiωtt=0=1
    δ ( t ) = F − 1 [ 1 ] = 1 2 π ∫ − ∞ + ∞ e i ω t d ω \displaystyleδ(t)=\mathcal{F}^{-1}[1]=\dfrac{1}{2\pi}\int_{-∞}^{+∞}e^{iω t}\text{d}ω δ(t)=F1[1]=2π1+eiωtdω
    或写为
    δ ( t ) = 1 2 π ∫ − ∞ + ∞ cos ⁡ ω t d ω = 1 π ∫ 0 + ∞ cos ⁡ ω t d ω \displaystyleδ(t)=\dfrac{1}{2\pi}\int_{-∞}^{+∞}\cosω t\text{d}ω =\dfrac{1}{\pi}\int_{0}^{+∞}\cosω t\text{d}ω δ(t)=2π1+cosωtdω=π10+cosωtdω
    由此可见,单位冲激函数包含所有频率成份,且它们具有相等的幅度,称此为均匀频谱或白色频谱。
    我们可以得到 :
    δ ( t ) ↔ 1 δ ( t − t 0 ) ↔ e − i ω t 0 1 ↔ 2 π δ ( ω ) e − i ω 0 t ↔ 2 π δ ( ω − ω 0 ) \begin{aligned} & δ(t) \lrarr 1 \\ & δ(t-t_0)\lrarr e^{-iω t_0} \\ & 1 \lrarr 2\pi δ(ω) \\ & e^{-iω_0 t} \lrarr 2\pi δ (ω − ω_0 ) \end{aligned} δ(t)1δ(tt0)eiωt012πδ(ω)eiω0t2πδ(ωω0)
    (2) 有许多重要的函数不满足Fourier 积分定理条件(绝对可积),例如常数、符号函数、单位阶跃函数、正弦函数和余弦函数等,但它们的广义Fourier 变换3也是存在的,利用单位脉冲函数及其Fourier 变换可以求出它们的Fourier 变换。
  • 周期函数的Fourier 变换
    定理:设 f ( t ) f(t) f(t) 以T 为周期,在 [ 0 , T ] [0,T] [0,T] 上满足 Dirichlet 条件,则 f ( t ) f(t) f(t)的Fourier 变换为: F ( ω ) = 2 π ∑ n = − ∞ + ∞ F ( n ω 0 ) δ ( ω − n ω 0 ) \displaystyle F(ω)=2\pi\sum_{n=-∞}^{+∞}F(nω_0)δ (ω − nω_0) F(ω)=2πn=+F(nω0)δ(ωnω0) 其中 ω 0 = 2 π / T , F ( n ω 0 ) ω_0=2\pi/T,F(nω_0) ω0=2π/T,F(nω0) f ( t ) f(t) f(t) 的离散频谱。

  • 多维 δ δ δ 函数:例如位于三维空间的坐标原点质量为 m m m 的质点,其密度函数可表示为 m δ ( r ) mδ(\mathbf r) mδ(r)。 在三维空间中的 δ δ δ 函数定义如下:
    δ ( r ) = { 0 ( r ≠ 0 ) ∞ ( r = 0 ) ∭ − ∞ + ∞ δ ( r ) d r = 1 δ(\mathbf r)= \begin{cases} 0 &(\mathbf r\neq0) \\ \infty &(\mathbf r=0) \end{cases} \\ \iiint\limits_{-\infty}^{+\infty} δ(\mathbf r)\mathrm d\mathbf r=1 δ(r)={0(r=0)(r=0)+δ(r)dr=1
    三维 δ δ δ 函数可表示为三个一维 δ δ δ 函数乘积表示,在直角坐标系中
    δ ( r ) = δ ( x ) δ ( y ) δ ( z ) δ(\mathbf r)=δ(x)δ(y)δ(z) δ(r)=δ(x)δ(y)δ(z)
    三维空间点 r 0 = ( x 0 , y 0 , z 0 ) \mathbf r_0=(x_0,y_0,z_0) r0=(x0,y0,z0) 处密度分布函数就是
    δ ( r − r 0 ) = δ ( x − x 0 ) δ ( y − y 0 ) δ ( z − z 0 ) δ(\mathbf{r-r_0})=δ(x-x_0)δ(y-y_0)δ(z-z_0) δ(rr0)=δ(xx0)δ(yy0)δ(zz0) 换算到柱坐标系 r 0 = ( r 0 , θ 0 , z 0 ) \mathbf r_0=(r_0,θ_0,z_0) r0=(r0,θ0,z0)
    δ ( r − r 0 ) = 1 r 0 δ ( r − r 0 ) δ ( θ − θ 0 ) δ ( z − z 0 ) δ(\mathbf{r-r_0})=\frac{1}{r_0}δ(r-r_0)δ(θ-θ_0)δ(z-z_0) δ(rr0)=r01δ(rr0)δ(θθ0)δ(zz0) 换算到球坐标系 r 0 = ( r 0 , θ 0 , ϕ 0 ) \mathbf r_0=(r_0,θ_0,ϕ_0) r0=(r0,θ0,ϕ0)
    δ ( r − r 0 ) = 1 r 0 2 sin ⁡ θ 0 δ ( r − r 0 ) δ ( θ − θ 0 ) δ ( ϕ − ϕ 0 ) δ(\mathbf{r-r_0})=\frac{1}{r_0^2\sinθ_0}δ(r-r_0)δ(θ-θ_0)δ(ϕ-ϕ_0) δ(rr0)=r02sinθ01δ(rr0)δ(θθ0)δ(ϕϕ0)
    多维 δ δ δ 函数主要性质:
    ∭ − ∞ + ∞ f ( r ) δ ( r − r 0 ) d r = f ( r 0 ) ∭ − ∞ + ∞ f ( r ) [ ∇ δ ( r − r 0 ) ] d r = − ∇ f ( r ) ∣ r = r 0 \iiint\limits_{-\infty}^{+\infty} f(\mathbf r)δ(\mathbf{r-r_0})\mathrm d\mathbf r=f(\mathbf r_0) \\ \iiint\limits_{-\infty}^{+\infty} f(\mathbf r)[\nablaδ(\mathbf{r-r_0})]\mathrm d\mathbf r=-\nabla f(\mathbf r)|_{\mathbf{r=r_0}} +f(r)δ(rr0)dr=f(r0)+f(r)[δ(rr0)]dr=f(r)r=r0
    位矢的微分:
    Δ 1 r = − 4 π δ ( r ) \Delta \frac{1}{r}=-4\piδ(\mathbf r) Δr1=4πδ(r) 其中 r = x 2 + y 2 + z 2 r=\sqrt{x^2+y^2+z^2} r=x2+y2+z2

Fourier 变换的应用

  1. 矩形脉冲函数(rectangular pulse function) f ( t ) = { 1 ∣ t ∣ < a 0 ∣ t ∣ > a f(t)=\begin{cases}1&|t|<a \\ 0 &|t|>a \end{cases} f(t)={10t<at>a 的Fourier 变换及其Fourier 积分表达式。
    矩形脉冲
    (1) Fourier 变换为
    F ( ω ) = ∫ − ∞ + ∞ f ( t ) e − i ω t d t = ∫ − a a e − i ω t d t = ∫ − a a cos ⁡ ( ω t ) d t − i ∫ − a a sin ⁡ ( ω t ) d t = 2 ∫ 0 a cos ⁡ ( ω t ) d t = 2 sin ⁡ ( a ω ) ω = 2 a sin ⁡ ( a ω ) a ω \begin{aligned} \displaystyle F(ω) &=\int^{+∞}_{-∞}f(t)e^{-iω t}\text{d}t=\int^{a}_{-a}e^{-iω t}\text{d}t \\ &=\int^{a}_{-a}\cos(ωt)\text{d}t-\text{i}\int^{a}_{-a}\sin(ωt)\text{d}t \\ &=2\int^{a}_{0}\cos(ωt)\text{d}t \\ &=\frac{2\sin(aω)}{ω} =2a\frac{\sin(aω)}{aω} \end{aligned} F(ω)=+f(t)eiωtdt=aaeiωtdt=aacos(ωt)dtiaasin(ωt)dt=20acos(ωt)dt=ω2sin(aω)=2aaωsin(aω)
    (2) 振幅谱 ∣ F ( ω ) ∣ = 2 a ∣ sin ⁡ ( a ω ) a ω ∣ \displaystyle |F(ω)| =2a\left|\frac{\sin(aω)}{aω}\right| F(ω)=2aaωsin(aω)
    相位谱 arg ⁡ F ( ω ) = { 0 2 n π a ⩽ ∣ ω ∣ ⩽ 2 n π a π others \arg F(ω)=\begin{cases} 0 & \frac{2n\pi}{a}⩽|ω|⩽ \frac{2n\pi}{a} \\ \pi &\text{others} \end{cases} argF(ω)={0πa2nπωa2nπothers
    频谱
    (3) Fourier 积分表达式为
    f ( t ) = F − 1 [ F ( ω ) ] = 1 2 π ∫ − ∞ + ∞ F ( ω ) e i ω t d ω = 1 2 π ∫ − ∞ + ∞ 2 sin ⁡ ( a ω ) ω e i ω t d ω = 1 π ∫ − ∞ + ∞ sin ⁡ ( a ω ) ω cos ⁡ ω t d ω = { 1 ∣ t ∣ < a 1 2 ∣ t ∣ = a 0 ∣ t ∣ > a \begin{aligned} \displaystyle f(t) &=\mathcal{F}^{-1}[F(ω)] \\ &=\dfrac{1}{2\pi}\int_{-∞}^{+∞}F(ω)e^{iω t}\text{d}ω=\dfrac{1}{2\pi}\int_{-∞}^{+∞}\frac{2\sin(aω)}{ω}e^{iω t}\text{d}ω \\ &=\dfrac{1}{\pi}\int_{-∞}^{+∞}\frac{\sin(aω)}{ω}\cosωt\text{d}ω \\ &=\begin{cases} 1 & |t|<a \\ \frac{1}{2} & |t|=a \\ 0 & |t|>a \\ \end{cases} \end{aligned} f(t)=F1[F(ω)]=2π1+F(ω)eiωtdω=2π1+ω2sin(aω)eiωtdω=π1+ωsin(aω)cosωtdω=1210t<at=at>a
    在上式中令 t = 0 t = 0 t=0,可得重要公式:
    ∫ − ∞ + ∞ sin ⁡ ( a x ) x d x = { − π a < 0 0 a = 0 π a > 0 \displaystyle\boxed{\int_{-∞}^{+∞}\frac{\sin(ax)}{x}\text{d}x= \begin{cases} -\pi &a<0 \\ 0 &a=0 \\ \pi &a>0 \end{cases}} +xsin(ax)dx=π0πa<0a=0a>0
    特别的 ∫ 0 + ∞ sin ⁡ x x d x = π 2 \displaystyle\int_{0}^{+∞}\frac{\sin x}{x}\text{d}x=\frac{\pi}{2} 0+xsinxdx=2π

  2. 指数衰减函数(exponential decay function) f ( t ) = { 0 t < 0 e − a t t ⩾ ​ 0 ( a > 0 ) f(t)=\begin{cases} 0 & t<0 \\ e^{-a t} &t⩾​0 \end{cases}\quad(a>0) f(t)={0eatt<0t0(a>0) 的Fourier 变换及Fourier 积分表达式。
    (1) Fourier 变换为
    F ( ω ) = ∫ − ∞ + ∞ f ( t ) e − i ω t d t = ∫ 0 + ∞ e − a t e − i ω t d t = 1 − ( a + i ω ) e − ( a + i ω ) t ∣ t = 0 t → + ∞ = 1 a + i ω = a − i ω a 2 + ω 2 \begin{aligned} \displaystyle F(ω) &=\int^{+∞}_{-∞}f(t)e^{-iω t}\text{d}t=\int^{+∞}_{0}e^{-a t}e^{-iω t}\text{d}t \\ &=\frac{1}{-(a+iω)}e^{-(a+iω)t}\Big|^{t\to+∞}_{t=0} \\ &=\frac{1}{a+iω}=\frac{a-iω}{a^2+ω^2} \end{aligned} F(ω)=+f(t)eiωtdt=0+eateiωtdt=(a+iω)1e(a+iω)tt=0t+=a+iω1=a2+ω2aiω
    (2) 振幅谱 ∣ F ( ω ) ∣ = 1 a 2 + ω 2 \displaystyle |F(ω)| =\frac{1}{\sqrt{a^2+ω^2}} F(ω)=a2+ω2 1
    相位谱 arg ⁡ F ( ω ) = − arctan ⁡ ω a \arg F(ω)=-\arctan\dfrac{ω}{a} argF(ω)=arctanaω

频谱图
(3) Fourier 积分表达式为
f ( t ) = F − 1 [ F ( ω ) ] = 1 2 π ∫ − ∞ + ∞ F ( ω ) e i ω t d ω = 1 2 π ∫ − ∞ + ∞ β − i ω β 2 + ω 2 e i ω t d ω = 1 2 π ∫ − ∞ + ∞ 1 β 2 + ω 2 ( β − i ω ) ( cos ⁡ ω t + i sin ⁡ ω t ) d ω \begin{aligned} \displaystyle f(t) &=\mathcal{F}^{-1}[F(ω)] \\ &=\dfrac{1}{2\pi}\int_{-∞}^{+∞}F(ω)e^{iω t}\text{d}ω=\dfrac{1}{2\pi}\int_{-∞}^{+∞}\frac{β-iω}{β^2+ω^2}e^{iω t}\text{d}ω \\ &=\dfrac{1}{2\pi}\int_{-∞}^{+∞}\frac{1}{β^2+ω^2}(β-iω)(\cosωt+i\sinωt)\text{d}ω \end{aligned} f(t)=F1[F(ω)]=2π1+F(ω)eiωtdω=2π1+β2+ω2βiωeiωtdω=2π1+β2+ω21(βiω)(cosωt+isinωt)dω
利用奇偶函数的积分性质,可得
f ( t ) = 1 π ∫ 0 + ∞ β cos ⁡ ω t + ω sin ⁡ ω t β 2 + ω 2 d ω \displaystyle f(t)=\dfrac{1}{\pi}\int_{0}^{+∞}\frac{β\cosωt+ω\sinωt}{β^2+ω^2}\text{d}ω f(t)=π10+β2+ω2βcosωt+ωsinωtdω
由此顺便得到一个含参变量广义积分的结果
∫ 0 + ∞ β cos ⁡ ω t + ω sin ⁡ ω t β 2 + ω 2 d ω = { 0 t < 0 π 2 t = 0 π e − β t t > 0 \displaystyle \boxed{\int_{0}^{+∞}\frac{β\cosωt+ω\sinωt}{β^2+ω^2}\text{d}ω= \begin{cases} 0 &t<0\\ \dfrac{\pi}{2} &t=0 \\ \pi e^{-βt} &t>0 \end{cases}} 0+β2+ω2βcosωt+ωsinωtdω=02ππeβtt<0t=0t>0

  1. 求单位阶跃函数2 u ( t ) = { 0 ( t < 0 ) 1 ( t > ​ 0 ) u(t)=\begin{cases} 0 & (t<0) \\ 1 & (t>​0) \end{cases} u(t)={01(t<0)(t>0) 的Fourier 变换及其积分表达式。
    (1) 现将 u ( t ) u(t) u(t)看作是指数衰减函数 f ( t ; β ) = { 0 t < 0 e − β t t > 0 f(t;β)=\begin{cases} 0 & t<0 \\ e^{-β t} &t>0 \end{cases} f(t;β)={0eβtt<0t>0 β → 0 + β\to0^+ β0+时的极限,即 u ( t ) = lim ⁡ β → 0 + f ( t ; β ) u(t)=\lim\limits_{β\to0^+}f(t;β) u(t)=β0+limf(t;β)
    F ( ω ) = lim ⁡ β → 0 + F [ f ( t ; β ) ] = lim ⁡ β → 0 + 1 β + i ω = lim ⁡ β → 0 + ( β β 2 + ω 2 − i ω β 2 + ω 2 ) = π δ ( ω ) + 1 i ω \begin{aligned} \displaystyle F(ω) & =\lim\limits_{β\to0^+}\mathcal{F}[f(t;β)]\\ &=\lim\limits_{β\to0^+}\frac{1}{β+iω} =\lim\limits_{β\to0^+}(\frac{β}{β^2+ω^2}-i\frac{ω}{β^2+ω^2})\\ &=\pi δ(ω)+\frac{1}{iω} \end{aligned} F(ω)=β0+limF[f(t;β)]=β0+limβ+iω1=β0+lim(β2+ω2βiβ2+ω2ω)=πδ(ω)+iω1
    又因 lim ⁡ β → 0 + ∫ − ∞ + ∞ β β 2 + ω 2 d ω = lim ⁡ β → 0 + [ arctan ⁡ ω β ] ∣ + ∞ − ∞ = π \displaystyle\lim\limits_{β\to0^+}\int_{-∞}^{+∞}\frac{β}{β^2+ω^2}dω=\lim\limits_{β\to0^+}[\arctan \frac{ω}{β}]\Big|^{-∞}_{+∞}=\pi β0+lim+β2+ω2βdω=β0+lim[arctanβω]+=π
    所以 lim ⁡ β → 0 + β β 2 + ω 2 = π δ ( ω ) \lim\limits_{β\to0^+}\dfrac{β}{β^2+ω^2}=πδ(ω) β0+limβ2+ω2β=πδ(ω)
    F [ u ( t ) ] = π δ ( ω ) + 1 i ω \mathcal{F}[u(t)]=\pi δ(ω)+\dfrac{1}{iω} F[u(t)]=πδ(ω)+iω1

    (2) Fourier 积分表达式
    u ( t ) = F − 1 [ F ( ω ) ] = 1 2 π ∫ − ∞ + ∞ F ( ω ) e i ω t d ω = 1 2 π ∫ − ∞ + ∞ [ π δ ( ω ) + 1 i ω ] e i ω t d ω = 1 2 ∫ − ∞ + ∞ δ ( ω ) e i ω t d ω + 1 2 π ∫ − ∞ + ∞ 1 i ω e i ω t d ω = 1 2 + 1 π ∫ 0 + ∞ sin ⁡ ω t ω d ω \begin{aligned} \displaystyle u(t) &=\mathcal{F}^{-1}[F(ω)] \\ &=\dfrac{1}{2\pi}\int_{-∞}^{+∞}F(ω)e^{iω t}\text{d}ω=\dfrac{1}{2\pi}\int_{-∞}^{+∞}[\pi δ(ω)+\dfrac{1}{iω}]e^{iω t}\text{d}ω \\ &=\dfrac{1}{2}\int_{-∞}^{+∞}δ(ω)e^{iω t}\text{d}ω+\dfrac{1}{2\pi}\int_{-∞}^{+∞}\dfrac{1}{iω}e^{iω t}\text{d}ω \\ &=\dfrac{1}{2}+\dfrac{1}{\pi}\int_{0}^{+∞}\dfrac{\sinω t}{ω}\text{d}ω \end{aligned} u(t)=F1[F(ω)]=2π1+F(ω)eiωtdω=2π1+[πδ(ω)+iω1]eiωtdω=21+δ(ω)eiωtdω+2π1+iω1eiωtdω=21+π10+ωsinωtdω
    在上式中令 t=1,可得狄利克雷积分 ∫ 0 + ∞ sin ⁡ t t d t = π 2 \displaystyle\int_{0}^{+∞}\dfrac{\sin t}{t}\text{d}t=\dfrac{\pi}{2} 0+tsintdt=2π

  2. 求余弦函数 f ( t ) = cos ⁡ ω 0 t f (t) = \cosω_0t f(t)=cosω0t 的Fourier 积分
    由欧拉公式 cos ⁡ ω 0 t = 1 2 ( e i ω 0 t + e − i ω 0 t ) \cosω_0t=\frac{1}{2}(e^{iω_0t}+e^{-iω_0t}) cosω0t=21(eiω0t+eiω0t)
    F [ cos ⁡ ω 0 t ] = ∫ − ∞ + ∞ cos ⁡ ω 0 t e − i ω t d t = ∫ 0 + ∞ 1 2 ( e i ω 0 t + e − i ω 0 t ) e − i ω t d t = 1 2 [ ∫ 0 + ∞ e − i ( ω − ω 0 ) t d t + ∫ 0 + ∞ e − i ( ω + ω 0 ) t d t ] = π [ δ ( ω − ω 0 ) + δ ( ω + ω 0 ) ] \begin{aligned} \displaystyle \mathcal{F}[\cosω_0t] &=\int^{+∞}_{-∞}\cosω_0te^{-iω t}\text{d}t\\ &=\int^{+∞}_{0}\frac{1}{2}(e^{iω_0t}+e^{-iω_0t})e^{-iω t}\text{d}t \\ &=\frac{1}{2}[\int^{+∞}_{0}e^{-i(ω-ω_0)t}\text{d}t+\int^{+∞}_{0}e^{-i(ω+ω_0)t}\text{d}t] \\ &=\pi [δ(ω-ω_0)+δ(ω+ω_0)] \end{aligned} F[cosω0t]=+cosω0teiωtdt=0+21(eiω0t+eiω0t)eiωtdt=21[0+ei(ωω0)tdt+0+ei(ω+ω0)tdt]=π[δ(ωω0)+δ(ω+ω0)]
    同理可证 F [ sin ⁡ ω 0 t ] = i π [ δ ( ω + ω 0 ) − δ ( ω − ω 0 ) ] \mathcal{F}[\sinω_0t]=i\pi [δ(ω+ω_0)-δ(ω-ω_0)] F[sinω0t]=iπ[δ(ω+ω0)δ(ωω0)]

Laplace 变换

Laplace 变换

  • Fourier 变换的局限性
    当函数满足Dirichlet条件,且在 ( − ∞ , + ∞ ) (-∞,+∞) (,+) 上绝对可积时,则可以进行古典Fourier 变换。
    引入广义函数和广义Fourier 变换是扩大Fourier 变换使用范围的一种方法,却要求有一系列更深刻的数学理论支持。对于以指数级增长的函数,如 e a t ( a > 0 ) e^{at} (a > 0) eat(a>0) 等,广义Fourier 变换仍无能为力。
    如何对Fourier 变换进行改造?
    (1) 由于单位阶跃函数 u ( t ) ≡ 0 ( t < 0 ) u(t)\equiv 0(t<0) u(t)0(t<0),因此 f ( t ) u ( t ) f(t)u(t) f(t)u(t) 可使积分区间从 ( − ∞ , + ∞ ) (−∞,+∞) (,+) 变成 [ 0 , + ∞ ) [0,+∞) [0,+)
    (2) 另外,函数 e − β t ( β > 0 ) e^{-βt} (β > 0) eβt(β>0) 具有衰减性质,对于许多非绝对可积的函数 f ( t ) f(t) f(t),总可选择适当大的 β,使 f ( t ) u ( t ) e − β t f(t)u(t)e^{-βt} f(t)u(t)eβt 满足绝对可积的条件。
    通过上述处理,就有希望使得函数 f ( t ) u ( t ) e − β t f(t)u(t)e^{-βt} f(t)u(t)eβt 满足Fourier 变换的条件,从而可以进行Fourier 变换。
    F [ f ( t ) u ( t ) e − β t ] = ∫ − ∞ + ∞ f ( t ) u ( t ) e − β t e − i ω t d t = ∫ 0 + ∞ f ( t ) e − ( β + i ω ) t d t \displaystyle \mathcal{F}[f(t)u(t)e^{-βt}] =\int^{+∞}_{-∞}f(t)u(t)e^{-βt}e^{-iω t}\text{d}t=\int^{+∞}_{0}f(t)e^{-(β+iω) t}\text{d}t F[f(t)u(t)eβt]=+f(t)u(t)eβteiωtdt=0+f(t)e(β+iω)tdt
    s = β + i ω s=β+iω s=β+iω 可得 F [ f ( t ) u ( t ) e − β t ] = ∫ 0 + ∞ f ( t ) e − s t d t \displaystyle\mathcal{F}[f(t)u(t)e^{-βt}]=\int^{+∞}_{0}f(t)e^{-s t}\text{d}t F[f(t)u(t)eβt]=0+f(t)estdt

    用幂级数推导出 “Laplace 变换”

  • Laplace变换
    Laplace变换:设函数 f ( t ) f(t) f(t) t ⩾ 0 t\geqslant 0 t0时有定义,且积分 ∫ 0 + ∞ f ( t ) e − s t d t \displaystyle\int_{0}^{+∞}f(t)e^{-st}dt 0+f(t)estdt在复数 s 的某一个区域内收敛,则此积分所确定的函数 F ( s ) = ∫ 0 + ∞ f ( t ) e − s t d t \displaystyle F(s)=\int^{+\infty}_{0}f(t)e^{-st}\text{d}t F(s)=0+f(t)estdt称为函数 f ( t ) f(t) f(t)的Laplace 变换,记为 F ( s ) = L [ f ( t ) ] F(s)=\mathcal L[f(t)] F(s)=L[f(t)],函数 F ( s ) F(s) F(s) 也可称为 f ( t ) f(t) f(t)的象函数。 f ( t ) = L − 1 [ F ( s ) ] f(t)=\mathcal L^{-1}[F(s)] f(t)=L1[F(s)]称为Laplace 逆变换。
    在Laplace 变换中,只要求 f ( t ) f(t) f(t) [ 0 , + ∞ ) [0,+∞) [0,+) 内有定义即可。为了研究方便,以后总假定在 ( − ∞ , 0 ) (−∞,0) (,0) 内, f ( t ) ≡ 0 f(t)≡0 f(t)0

    Laplace变换存在定理:设函数 f ( t ) f(t) f(t)满足
    (1) 在 t ⩾ 0 t⩾0 t0的任何有限区间分段连续;
    (2) 当 t → + ∞ t\to +∞ t+时, f ( t ) f(t) f(t)的增长速度不超过某指数函数,即 ∃ M > 0 , C ⩾ 0 \exists M>0,C⩾0 M>0,C0,使得 ∣ f ( t ) ∣ ⩽ M e C t ( t ⩾ 0 ) |f(t)|⩽Me^{Ct}(t⩾0) f(t)MeCt(t0) 成立。
    f ( t ) f(t) f(t)的Laplace 变换 F ( s ) F(s) F(s)在半平面 Re  ( s ) > C \text{Re }(s)>C Re (s)>C上一定存在,且是解析的。

    周期函数的Laplace变换:设 f ( t ) f(t) f(t) [ 0 , + ∞ ) [0, +\infty) [0,+) 内以T 为周期的函数,且逐段光滑,则 L [ f ( t ) ] = 1 1 − e − s T ∫ 0 T f ( t ) e − s t d t \displaystyle\mathcal L[f(t)]=\frac{1}{1-e^{-sT}}\int^{T}_{0}f(t)e^{-st}\text{d}t L[f(t)]=1esT10Tf(t)estdt

Laplace变换的性质

  1. 线性性质:设 F 1 ( s ) = L [ f 1 ( t ) ] , F 2 ( s ) = L [ f 2 ( t ) ] F_1(s)=\mathcal L[f_1(t)],F_2(s)=\mathcal L[f_2(t)] F1(s)=L[f1(t)],F2(s)=L[f2(t)]
    L [ α f 1 ( t ) + β f 2 ( t ) ] = α F 1 ( s ) + β F 2 ( s ) \mathcal L[\alpha f_1(t)+\beta f_2(t)]=\alpha F_1(s)+\beta F_2(s) L[αf1(t)+βf2(t)]=αF1(s)+βF2(s)
    L − 1 [ α F 1 ( s ) + β F 2 ( s ) ] = α f 1 ( t ) + β f 2 ( t ) \mathcal L^{-1}[\alpha F_1(s)+\beta F_2(s)]=\alpha f_1(t)+\beta f_2(t) L1[αF1(s)+βF2(s)]=αf1(t)+βf2(t)

  2. 位移性质 L [ e s 0 t f ( t ) ] = F ( s − s 0 ) \mathcal L [e^{s_0t}f(t)]=F(s-s_0) L[es0tf(t)]=F(ss0)

  3. 微分性质:设 F ( s ) = L [ f ( t ) ] F(s)=\mathcal L[f(t)] F(s)=L[f(t)]
    L [ f ′ ( t ) ] = s F ( s ) − f ( 0 ) \mathcal L[f'(t)]=sF(s)-f(0) L[f(t)]=sF(s)f(0)
    L [ f ( n ) ( t ) ] = s n F ( s ) − ∑ k = 1 n s n − k f ( k − 1 ) ( 0 ) \displaystyle \mathcal L[f^{(n)}(t)]=s^nF(s)-\sum_{k=1}^{n} s^{n-k}f^{(k-1)}(0) L[f(n)(t)]=snF(s)k=1nsnkf(k1)(0)
    F ′ ( s ) = − L [ t f ( t ) ] F'(s)=-\mathcal L[tf(t)] F(s)=L[tf(t)]
    F ( n ) ( s ) = ( − 1 ) n L [ t n f ( t ) ] F^{(n)}(s)=(-1)^n\mathcal L[t^nf(t)] F(n)(s)=(1)nL[tnf(t)]

  4. 积分性质:设 F ( s ) = L [ f ( t ) ] F(s)=\mathcal L[f(t)] F(s)=L[f(t)]
    L [ ∫ 0 t f ( t ) d t ] = 1 s F ( s ) \displaystyle\mathcal L[\int^t_0f(t)dt]=\frac 1sF(s) L[0tf(t)dt]=s1F(s)
    L [ ∫ 0 t d t ∫ 0 t d t ⋯ ∫ 0 t ⏟ n times f ( t ) d t ] = 1 s n F ( s ) \displaystyle\mathcal L[\underbrace{\int^t_0dt\int^t_0dt\cdots\int^t_0}_{\text{n times}}f(t)dt]=\frac{1}{s^n}F(s) L[n times 0tdt0tdt0tf(t)dt]=sn1F(s)
    L [ f ( t ) t ] = ∫ s ∞ F ( s ) d s \displaystyle\mathcal L[\frac{f(t)}{t}]=\int^{\infty}_sF(s)ds L[tf(t)]=sF(s)ds
    L [ f ( t ) t n ] = L [ ∫ s ∞ d t ∫ s ∞ d t ⋯ ∫ s ∞ ⏟ n times F ( s ) d s ] \displaystyle\mathcal L[\frac{f(t)}{t^n}]= \mathcal L[\underbrace{\int^∞_sdt\int^∞_sdt\cdots\int^∞_s}_{\text{n times}}F(s)ds] L[tnf(t)]=L[n times sdtsdtsF(s)ds]

  5. 延迟性质 if  t > 0 , f ( t ) = 0 , then  ∀ t 0 > 0 \text{if } t>0,f(t)=0, \text{then }\forall t_0>0 if t>0,f(t)=0,then t0>0
    L [ f ( t − t 0 ) ] = e − s t 0 F ( s ) \mathcal L[f(t-t_0)]=e^{-st_0}F(s) L[f(tt0)]=est0F(s)
    L − 1 [ e − s t 0 F ( s ) ] = f ( t − t 0 ) u ( t − t 0 ) \mathcal L^{-1}[e^{-st_0}F(s)]=f(t-t_0)u(t-t_0) L1[est0F(s)]=f(tt0)u(tt0)

  6. 卷积定理1:设 F 1 ( s ) = L [ f 1 ( t ) ] , F 2 ( s ) = L [ f 2 ( t ) ] F_1(s)=\mathcal{L}[f_1(t)],F_2(s)=\mathcal{L}[f_2(t)] F1(s)=L[f1(t)],F2(s)=L[f2(t)],则有
    L [ f 1 ∗ f 2 ] = F 1 ( s ) ⋅ F 2 ( s ) L − 1 [ F 1 ( s ) ⋅ F 2 ( s ) ] = f 1 ∗ f 2 \mathcal L[f_1*f_2]=F_1(s)\cdot F_2(s) \\ \mathcal L^{-1}[F_1(s)\cdot F_2(s)]=f_1*f_2 L[f1f2]=F1(s)F2(s)L1[F1(s)F2(s)]=f1f2

Laplace 逆变换

  • 反演积分公式(inverse integral formula):由于 f ( t ) f(t) f(t) 的Laplace 变换 F ( s ) = F ( β + i ω ) F(s)=F(β+iω) F(s)=F(β+iω)就是 f ( t ) u ( t ) e − β t f(t)u(t)e^{-βt} f(t)u(t)eβt 的Fourier 变换,即
    L [ f ( t ) ] = F [ f ( t ) u ( t ) e − β t ] = ∫ − ∞ + ∞ f ( t ) u ( t ) e − β t e − i ω t d t \displaystyle\mathcal L[f(t)]=\mathcal F[f(t)u(t)e^{-βt}]=\int_{−∞}^{+∞} f(t)u(t)e^{-βt}e^{-iωt}dt L[f(t)]=F[f(t)u(t)eβt]=+f(t)u(t)eβteiωtdt
    因此,在 f ( t ) ( t > 0 ) f(t)(t>0) f(t)(t>0)的连续点处有
    f ( t ) u ( t ) e − β t = 1 2 π ∫ − ∞ + ∞ F ( β + i ω ) e i ω t d ω \displaystyle f(t)u(t)e^{-βt}=\dfrac{1}{2\pi}\int_{-∞}^{+∞}F(β+iω)e^{iω t}\text{d}ω f(t)u(t)eβt=2π1+F(β+iω)eiωtdω
    等式两边同乘 e β t e^{βt} eβt,并令 s = β + i ω s=β+iω s=β+iω 则有
    f ( t ) u ( t ) = 1 2 π i ∫ β − i ω β + i ω F ( s ) e s t d s \displaystyle f(t)u(t)=\dfrac{1}{2\pi i}\int_{β-iω}^{β+iω}F(s)e^{st}\text{d}s f(t)u(t)=2πi1βiωβ+iωF(s)estds
    因此 f ( t ) = 1 2 π i ∫ β − i ω β + i ω F ( s ) e s t d s ( t > 0 ) \displaystyle f(t)=\dfrac{1}{2\pi i}\int_{β-iω}^{β+iω}F(s)e^{st}\text{d}s \quad(t>0) f(t)=2πi1βiωβ+iωF(s)estds(t>0)

  • 利用留数计算反演积分
    定理 F ( s ) F(s) F(s) 在复平面内只有有限个孤立奇点 s 1 , s 2 , ⋯   , s n s_1,s_2,\cdots,s_n s1,s2,,sn ,实数 β使这些奇点全在半平面 Re ( s ) < β \text{Re}(s)<β Re(s)<β 内,且 lim ⁡ s → ∞ F ( s ) = 0 \lim\limits_{s\to∞}F(s)=0 slimF(s)=0 ,则有 f ( t ) = ∑ k = 1 n Res [ F ( s ) e s t , s k ] ( t > 0 ) \displaystyle f(t)=\sum_{k=1}^n\text{Res}[F(s)e^{st},s_k]\quad(t>0) f(t)=k=1nRes[F(s)est,sk](t>0)Laplace 逆变换
    证明:作半圆将所有奇点包围,设 C = C R + L C=C_R+L C=CR+L,由于 e s t e^{st} est在全平面解析,所以 F ( s ) e s t F(s)e^{st} F(s)est的奇点就是 F ( s ) F(s) F(s)的奇点,由留数定理可得
    2 π i ∑ k = 1 n Res [ F ( s ) e s t , s k ] = ∮ C F ( s ) e s t d s = ∫ β − i R β + i R F ( s ) e s t d s + ∫ C R F ( s ) e s t d s \displaystyle 2\pi i\sum_{k=1}^n\text{Res}[F(s)e^{st},s_k]=\oint_{C}F(s)e^{st}ds=\int_{β-iR}^{β+iR}F(s)e^{st}ds+\int_{C_R}F(s)e^{st}ds 2πik=1nRes[F(s)est,sk]=CF(s)estds=βiRβ+iRF(s)estds+CRF(s)estds
    由若尔当引理,当 t>0 时,有 lim ⁡ R → + ∞ ∫ C R F ( s ) e s t d s = 0 \displaystyle\lim\limits_{R\to+\infty}\int_{C_R}F(s)e^{st}ds=0 R+limCRF(s)estds=0
    再根据反演积分公式可得定理公式。
    实际中经常遇到有理函数类 F ( s ) = A ( s ) B ( s ) F(s)=\dfrac{A(s)}{B(s)} F(s)=B(s)A(s),其中 A ( s ) , B ( s ) A(s),B(s) A(s),B(s)是不可约的多项式,当分子 A ( s ) A(s) A(s) 的次数小于分母 B ( s ) B(s) B(s)的次数时,满足定理对 F ( s ) F(s) F(s) 的要求,可用留数计算Laplace 逆变换。

Laplace 变换的应用

常用函数的Laplace变换

  1. 求指数函数 f ( t ) = e a t ( a ⩾ 0 ) f(t) = e^{at} ( a⩾0) f(t)=eat(a0)的Laplace 变换
    L [ e a t ] = ∫ 0 + ∞ e a t e − s t d t = ∫ 0 + ∞ e − ( s − a ) t d t \displaystyle \mathcal L[e^{at}]=\int^{+\infty}_{0}e^{at}e^{-st}\text{d}t=\int^{+\infty}_{0}e^{-(s-a)t}\text{d}t L[eat]=0+eatestdt=0+e(sa)tdt
    Re  s > a \text{Re }s>a Re s>a 时,设 s = β + i ω s=β+iω s=β+iω ,此时
    lim ⁡ t → + ∞ e − ( s − a ) t = lim ⁡ t → + ∞ e − ( β − a ) t e − i ω = 0 ( β > 0 ) \lim\limits_{t\to+\infty}e^{-(s-a)t}=\lim\limits_{t\to+\infty}e^{-(β-a)t}e^{-iω}=0 (β>0) t+lime(sa)t=t+lime(βa)teiω=0(β>0)
    所以有 L [ e a t ] = 1 s − a ( Re  s > a ) \displaystyle \mathcal L[e^{at}]=\frac{1}{s-a}\quad(\text{Re }s>a) L[eat]=sa1(Re s>a)

  2. 求函数 f ( t ) = 1 f(t) = 1 f(t)=1 的Laplace 变换
    L [ 1 ] = ∫ 0 + ∞ e − s t d t = 1 s ( Re  s > 0 ) \displaystyle \mathcal L[1]=\int^{+\infty}_{0}e^{-st}\text{d}t=\frac{1}{s}\quad(\text{Re }s>0) L[1]=0+estdt=s1(Re s>0)

  3. 单位阶跃函数2 u ( t ) = { 0 t < 0 1 t > ​ 0 u(t)=\begin{cases} 0 & t<0 \\ 1 &t>​0 \end{cases} u(t)={01t<0t>0 的Laplace 变换
    L [ u ( t ) ] = 1 s ( Re  s > 0 ) \displaystyle \mathcal L[u(t)]=\frac{1}{s}\quad(\text{Re }s>0) L[u(t)]=s1(Re s>0)

  4. 正弦函数 L [ sin ⁡ ω t ] = ω s 2 + ω 2 ( Re  s > 0 ) \displaystyle \mathcal L[ \sinωt]=\frac{ω}{s^2+ω^2}\quad(\text{Re }s>0) L[sinωt]=s2+ω2ω(Re s>0)
    余弦函数 L [ cos ⁡ ω t ] = s s 2 + ω 2 ( Re  s > 0 ) \displaystyle \mathcal L[ \cosωt]=\frac{s}{s^2+ω^2}\quad(\text{Re }s>0) L[cosωt]=s2+ω2s(Re s>0)

  5. 幂函数 f ( t ) = t m ( m ∈ Z + ) f(t)=t^m(m\in\Z^+) f(t)=tm(mZ+) 的Laplace 变换
    L [ t m ] = ∫ 0 + ∞ t m e − s t d t = − 1 s ∫ 0 + ∞ t m d e − s t = − 1 s t m e − s t ∣ 0 + ∞ + m s ∫ 0 + ∞ t m − 1 e − s t d t = m s L [ t m − 1 ] ( Re  s > 0 ) \displaystyle\begin{aligned} \mathcal L[t^m] &=\int^{+\infty}_{0}t^me^{-st}\text{d}t=-\frac{1}{s}\int^{+\infty}_{0}t^m\text{d}e^{-st} \\ & =-\frac{1}{s}t^me^{-st}\Big|_{0}^{+\infty}+\frac{m}{s}\int^{+\infty}_{0}t^{m-1}e^{-st}\text{d}t \\ &=\frac{m}{s}\mathcal L[t^{m-1}]\quad(\text{Re }s>0) \end{aligned} L[tm]=0+tmestdt=s10+tmdest=s1tmest0++sm0+tm1estdt=smL[tm1](Re s>0)
    又由 L [ 1 ] = 1 / s \displaystyle\mathcal L[1]=1/s L[1]=1/s,故递推可得
    L [ t m ] = m ! s m + 1 ( Re  s > 0 ) \displaystyle\mathcal L[t^m]=\frac{m!}{s^{m+1}}\quad(\text{Re }s>0) L[tm]=sm+1m!(Re s>0)

  6. 求 δ 函数的Laplace 变换。
    狄利克雷函数 δ τ ( t ) = { 1 τ 0 ⩽ t < τ 0 others δ_τ(t)=\begin{cases} \frac{1}{τ} &0⩽ t<τ \\ 0 &\text{others} \end{cases} δτ(t)={τ100t<τothers 的Laplace 变换为
    L [ δ τ ( t ) ] = ∫ 0 τ 1 τ e − s t d t = 1 τ s ( 1 − e − τ s ) \displaystyle \mathcal L[δ_τ(t)]=\int^{τ}_{0}\frac{1}{τ}e^{-st}\text{d}t=\frac{1}{τs}(1-e^{-τs}) L[δτ(t)]=0ττ1estdt=τs1(1eτs)
    L [ δ ( t ) ] = lim ⁡ τ → 0 L [ δ τ ( t ) ] = lim ⁡ τ → 0 1 τ s ( 1 − e − τ s ) \displaystyle \mathcal L[δ(t)]=\lim\limits_{τ\to0}\mathcal L[δ_τ(t)]=\lim\limits_{τ\to0}\frac{1}{τs}(1-e^{-τs}) L[δ(t)]=τ0limL[δτ(t)]=τ0limτs1(1eτs)
    用洛必达法则计算此极限 lim ⁡ τ → 0 1 τ s ( 1 − e − τ s ) = lim ⁡ τ → 0 s e − τ s s = 1 \displaystyle\lim\limits_{τ\to0}\frac{1}{τs}(1-e^{-τs})=\lim\limits_{τ\to0}\frac{se^{-τs}}{s}=1 τ0limτs1(1eτs)=τ0limsseτs=1
    所以 L [ δ ( t ) ] = 1 \mathcal L[δ(t)]=1 L[δ(t)]=1

微分方程的Laplace变换解法:主要借助于Laplace变换的微分性质
L [ f ( n ) ( t ) ] = s n F ( s ) − ∑ k = 1 n s n − k f ( k − 1 ) ( 0 ) \displaystyle \mathcal L[f^{(n)}(t)]=s^nF(s)-\sum_{k=1}^{n} s^{n-k}f^{(k-1)}(0) L[f(n)(t)]=snF(s)k=1nsnkf(k1)(0)
(1) 将微分方程(组)化为象函数的代数方程(组);
(2) 求解代数方程得到象函数;
(3) 求Laplace 逆变换得到微分方程(组)的解。
微分方程

  1. 求解微分方程 y ′ ′ + ω 2 y = 0 y''+ω^2y=0 y+ω2y=0 满足初始条件 y ( 0 ) = 0 , y ′ ( 0 ) = ω y(0)=0,y'(0)=ω y(0)=0,y(0)=ω
    (1) 令 Y ( s ) = L [ y ( t ) ] Y(s)=\mathcal L[y(t)] Y(s)=L[y(t)] ,对方程两边取Laplace 变换
    s 2 Y ( s ) − s y ( 0 ) − y ′ ( 0 ) + ω 2 Y ( s ) = 0 s^2Y(s)-sy(0)-y'(0)+ω^2Y(s)=0 s2Y(s)sy(0)y(0)+ω2Y(s)=0,带入初始条件可得
    s 2 Y ( s ) − ω + ω 2 Y ( s ) = 0 s^2Y(s)-ω+ω^2Y(s)=0 s2Y(s)ω+ω2Y(s)=0
    (2) 求解此方程,得 Y ( s ) = ω s 2 + ω 2 Y(s)=\dfrac{ω}{s^2+ω^2} Y(s)=s2+ω2ω
    (3) 求Laplace 逆变换,得 y = L − 1 [ Y ( s ) ] = sin ⁡ ω t y=\mathcal L^{-1}[Y(s)]=\sin ωt y=L1[Y(s)]=sinωt

  2. 求解微分方程初值问题 { a x ′ ( t ) + b x ( t ) = f ( t ) , t > 0 x ( 0 ) = c \begin{cases} ax'(t)+bx(t)=f(t),&t>0 \\ x(0)=c \\ \end{cases} {ax(t)+bx(t)=f(t),x(0)=ct>0
    X ( s ) = L [ x ( t ) ] , F ( s ) = L [ f ( t ) ] X(s)=\mathcal L[x(t)],F(s)=\mathcal L[f(t)] X(s)=L[x(t)],F(s)=L[f(t)] ,对方程两边取Laplace 变换,带入初始条件可得
    a ( s X ( s ) − c ) + b X ( s ) = F ( s ) a(sX(s)-c)+bX(s)=F(s) a(sX(s)c)+bX(s)=F(s)
    解得 X ( s ) = F ( s ) + a c a s + b = c 1 s + b / a + 1 a 1 s + b / a F ( s ) X(s)=\cfrac{F(s)+ac}{as+b}=c\cfrac{1}{s+b/a}+\cfrac{1}{a}\cfrac{1}{s+b/a}F(s) X(s)=as+bF(s)+ac=cs+b/a1+a1s+b/a1F(s)
    由于 L − 1 [ 1 s + b / a ] = e − b a t \mathcal L^{-1}[\cfrac{1}{s+b/a}]=e^{-\frac{b}{a}t} L1[s+b/a1]=eabt,故上式Laplace 逆变换为
    x ( t ) = c e − b a t + 1 a ∫ 0 t f ( τ ) e − b a ( t − τ ) d τ \displaystyle x(t)=ce^{-\frac{b}{a}t}+\frac{1}{a}\int_{0}^{t}f(τ)e^{-\frac{b}{a}(t-τ)}\text{d}τ x(t)=ceabt+a10tf(τ)eab(tτ)dτ

  3. 求微分方程组: { x ′ + y + z ′ = 1 x + y ′ + z = 0 y + 4 z ′ = 0 \begin{cases} x'+y+z'=1\\ x+y'+z=0\\ y+4z'=0 \end{cases} x+y+z=1x+y+z=0y+4z=0 满足初始条件 x ( 0 ) = 0 , y ( 0 ) = 0 , z ( 0 ) = 0 x(0)=0,y(0)=0,z(0)=0 x(0)=0,y(0)=0,z(0)=0
    L [ x ( t ) ] = X ( s ) , L [ y ( t ) ] = Y ( s ) , L [ z ( t ) ] = Z ( s ) \mathcal L[x(t)]=X(s),\mathcal L[y(t)]=Y(s),\mathcal L[z(t)]=Z(s) L[x(t)]=X(s),L[y(t)]=Y(s),L[z(t)]=Z(s)
    对方程组两边取Laplace 变换,并带入初始条件可得
    { s X ( s ) + Y ( s ) + s Z ( s ) = 1 s X ( s ) + s Y ( s ) + Z ( s ) = 0 Y ( s ) + 4 s Z ( s ) = 0 \begin{cases} sX(s)+Y(s)+sZ(s)=\dfrac 1s\\ X(s)+sY(s)+Z(s)=0\\ Y(s)+4sZ(s)=0 \end{cases} sX(s)+Y(s)+sZ(s)=s1X(s)+sY(s)+Z(s)=0Y(s)+4sZ(s)=0
    解代数方程组得:
    { X ( s ) = 4 s 2 − 1 4 s 2 ( s 2 − 1 ) Y ( s ) = − 1 s ( s 2 − 1 ) Z ( s ) = 1 4 s 2 ( s 2 − 1 ) \begin{cases} X(s)=\dfrac{4s^2-1}{4s^2(s^2-1)} \\ Y(s)=\dfrac {-1}{s(s^2-1)} \\ Z(s)=\dfrac {1}{4s^2(s^2-1)} \\ \end{cases} X(s)=4s2(s21)4s21Y(s)=s(s21)1Z(s)=4s2(s21)1
    对每一像函数取Laplace 逆变换可得:
    { x ( t ) = L − 1 [ X ( s ) ] = 1 4 L − 1 [ 3 s 2 − 1 + 1 s 2 ] = 1 4 ( 3 sinh ⁡ t + t ) y ( t ) = L − 1 [ Y ( s ) ] = L − 1 [ 1 s − s s 2 − 1 ] = 1 − cosh ⁡ t z ( t ) = L − 1 [ Z ( s ) ] = 1 4 L − 1 [ 1 s 2 − 1 − 1 s 2 ] = 1 4 ( sinh ⁡ t − t ) \begin{cases} x(t)=\mathcal L^{-1}[X(s)]=\dfrac 14\mathcal L^{-1}[\dfrac {3}{s^2-1}+\dfrac{1}{s^2}]=\dfrac 14(3\sinh t+t) \\ y(t)=\mathcal L^{-1}[Y(s)]=\mathcal L^{-1}[\dfrac 1s-\dfrac {s}{s^2-1}]=1-\cosh t \\ z(t)=\mathcal L^{-1}[Z(s)]=\dfrac 14\mathcal L^{-1}[\dfrac {1}{s^2-1}-\dfrac {1}{s^2}]=\dfrac 14(\sinh t-t) \end{cases} x(t)=L1[X(s)]=41L1[s213+s21]=41(3sinht+t)y(t)=L1[Y(s)]=L1[s1s21s]=1coshtz(t)=L1[Z(s)]=41L1[s211s21]=41(sinhtt)

  4. 求解积分方程: f ( t ) = a t − ∫ 0 t sin ⁡ ( x − t ) f ( x ) d t ( a ≠ 0 ) \displaystyle f(t)=at-\int_{0}^{t}\sin(x-t)f(x)dt\quad(a\neq0) f(t)=at0tsin(xt)f(x)dt(a=0)
    原方程化为 f ( t ) = a t + f ( t ) ∗ sin ⁡ t \displaystyle f(t)=at+f(t)*\sin t f(t)=at+f(t)sint
    F ( s ) = L [ f ( t ) ] F(s)=\mathcal L[f(t)] F(s)=L[f(t)] ,对方程两边取Laplace 变换
    F ( s ) = a s 2 + 1 s 2 + 1 F ( s ) F(s)=\dfrac{a}{s^2}+\dfrac{1}{s^2+1}F(s) F(s)=s2a+s2+11F(s)
    解得 F ( s ) = a ( a s 2 + a s 4 ) F(s)=a(\dfrac{a}{s^2}+\dfrac{a}{s^4}) F(s)=a(s2a+s4a)
    求Laplace 逆变换 f ( t ) = a ( t + t 3 6 ) f(t)=a(t+\dfrac{t^3}{6}) f(t)=a(t+6t3)

物理学问题

  1. 设质量为m 的物体静止在原点,在 t = 0 时受到 x 方向的冲击力 F 0 δ ( t ) F_0δ(t) F0δ(t)的作用,求物体的运动方程。
    设物体的运动方程为 x = x ( t ) x = x(t) x=x(t) ,根据Newton 定律
    m x ′ ′ ( t ) = F 0 δ ( t ) , x ( 0 ) = x ′ ( 0 ) = 0 mx''(t)=F_0δ(t),x(0)=x'(0)=0 mx(t)=F0δ(t),x(0)=x(0)=0
    X ( s ) = L [ x ( t ) ] X(s)=\mathcal L[x(t)] X(s)=L[x(t)] ,对方程两边取Laplace 变换,并带入初始条件得
    m s 2 X ( s ) = F 0    ⟹    X ( s ) = F 0 m s 2 ms^2X(s)=F_0\implies X(s)=\frac{F_0}{ms^2} ms2X(s)=F0X(s)=ms2F0
    求Laplace 逆变换即得物体的运动方程为: x ( t ) = F 0 m t x(t)=\frac{F_0}{m}t x(t)=mF0t

  2. 质量为m的物体挂在弹簧系数为k 的弹簧一端(如图),作用在物体上的外力为 f ( t ) f(t) f(t)。若物体自静止平衡位置 x = 0 处开始运动,求该物体的运动规律 x ( t ) x(t) x(t)
    动力学
    (1) 根据 Newton 定律及 Hooke 定律,物体的运动规律 x ( t ) x(t) x(t) 满足如下的微分方程:
    m x ′ ′ ( t ) + k x ( t ) = f ( t ) ; x ( 0 ) = x ′ ( 0 ) mx''(t)+kx(t)=f(t);\quad x(0)=x'(0) mx(t)+kx(t)=f(t);x(0)=x(0)
    (2) 令 X ( s ) = L [ x ( t ) ] , F ( s ) = L [ f ( t ) ] X(s)=\mathcal L[x(t)],F(s)=\mathcal L[f(t)] X(s)=L[x(t)],F(s)=L[f(t)] ,对方程两边取Laplace 变换,带入初始条件可得
    m s 2 X ( s ) + k X ( s ) = F ( s ) ms^2X(s)+kX(s)=F(s) ms2X(s)+kX(s)=F(s)
    ω 0 2 = k / m ω_0^2=k/m ω02=k/m,有 X ( s ) = 1 m ω 0 ⋅ ω 0 s 2 + ω 0 2 ⋅ F ( s ) X(s)=\dfrac{1}{mω_0}\cdot\dfrac{ω_0}{s^2+ω_0^2}\cdot F(s) X(s)=mω01s2+ω02ω0F(s)
    (3) 利用卷积定理,求Laplace 逆变换得:
    x ( t ) = L − 1 [ X ( s ) ] = 1 m ω 0 [ sin ⁡ ω 0 t ∗ f ( t ) ] x(t)=\mathcal L^{-1}[X(s)]=\dfrac{1}{mω_0}[\sinω_0t*f(t)] x(t)=L1[X(s)]=mω01[sinω0tf(t)]
    f ( t ) f(t) f(t)具体给出时,即可以求得运动规律 x ( t ) x(t) x(t)
    设物体在 t = 0时受到的外力为 f ( t ) = A δ ( t ) f(t ) = Aδ(t) f(t)=Aδ(t)
    此时,物体的运动规律为:
    x ( t ) = 1 m ω 0 [ sin ⁡ ω 0 t ∗ f ( t ) ] = A m ω 0 sin ⁡ ω 0 t x(t)=\dfrac{1}{mω_0}[\sinω_0t*f(t)]=\dfrac{A}{mω_0}\sinω_0t x(t)=mω01[sinω0tf(t)]=mω0Asinω0t

附录

积分变换表

f ( t ) f(t) f(t)Fourier TransformLaplace Transform
Conditions f ( t ) f(t) f(t) R \R R上满足:
(1) 在任一有限区间上满足Dirichlet条件;
(2) 在无限区间 ( − ∞ , + ∞ ) (-∞,+∞) (,+)上绝对可积 ,即 ∫ − ∞ + ∞ ∣ f ( t ) ∣ d t \displaystyle\int_{-∞}^{+∞}\mid f(t)\mid \text{d}t +f(t)dt 收敛
Dirichlet 条件:
(1)连续或只有有限个第一类间断点;
(2)只有有限个极值点
f ( t ) f(t) f(t)满足
(1) 在 t ⩾ 0 t⩾0 t0的任何有限区间分段连续;
(2) 当 t → + ∞ t\to +∞ t+时, f ( t ) f(t) f(t)的增长速度不超过某指数函数,即
∃ M > 0 , C ⩾ 0 \exists M>0,C⩾0 M>0,C0,使得 ∣ f ( t ) ∣ ⩽ M e C t ( t ⩾ 0 ) \mid f(t)\mid ⩽Me^{Ct}(t⩾0) f(t)MeCt(t0) 成立。
f ( t ) f(t) f(t)的Laplace 变换 F ( s ) F(s) F(s)在半平面 Re  ( s ) > C \text{Re }(s)>C Re (s)>C上一定存在,且是解析的。
Kernel Function e − i ω t e^{-\text{i}ωt} eiωt e − s t e^{-st} est
Interval ( − ∞ , + ∞ ) (-∞,+∞) (,+) ( 0 , + ∞ ) (0,+∞) (0,+)
Symbols F ( ω ) = F [ f ( t ) ] F(ω)=\mathcal{F}[f(t)] F(ω)=F[f(t)]
f ( t ) = F − 1 [ F ( ω ) ] f(t)=\mathcal{F}^{-1}[F(ω)] f(t)=F1[F(ω)]
F ( s ) = L [ f ( t ) ] F(s)=\mathcal{L}[f(t)] F(s)=L[f(t)]
f ( t ) = L − 1 [ F ( s ) ] f(t)=\mathcal{L}^{-1}[F(s)] f(t)=L1[F(s)]
Transform
(image)
F ( ω ) = ∫ − ∞ + ∞ f ( τ ) e − i ω t d t \displaystyle F(ω)=\int^{+∞}_{-∞}f(τ)e^{-\text{i}ωt}\text{d}t F(ω)=+f(τ)eiωtdt F ( s ) = ∫ 0 + ∞ f ( t ) e − s t d t \displaystyle F(s)=\int^{+\infty}_{0}f(t)e^{-st}\text{d}t F(s)=0+f(t)estdt
Inverse Transform
(original image)
f ( t ) = 1 2 π ∫ − ∞ + ∞ F ( ω ) e i ω t d ω \displaystyle f(t)=\dfrac{1}{2\pi}\int_{-∞}^{+∞}F(ω)e^{\text{i}ω t}\text{d}ω f(t)=2π1+F(ω)eiωtdω f ( t ) = 1 2 π i ∫ β − i ω β + i ω F ( s ) e s t d s ( t > 0 ) \displaystyle f(t)=\dfrac{1}{2\pi i}\int_{β-iω}^{β+iω}F(s)e^{st}\text{d}s \quad(t>0) f(t)=2πi1βiωβ+iωF(s)estds(t>0)
f ( t ) = ∑ k = 1 n Res [ F ( s ) e s t , s k ] ( t > 0 ) \displaystyle f(t)=\sum_{k=1}^n\text{Res}[F(s)e^{st},s_k]\quad(t>0) f(t)=k=1nRes[F(s)est,sk](t>0)
Functions
(original image)
Fourier Transform
(image)
Laplace Transform
δ ( t ) δ(t) δ(t)11
δ ( t − t 0 ) δ(t−t_0) δ(tt0) e − i ω t 0 e^{-\text{i}ω t_0} eiωt0 e − s t 0 ( t 0 > 0 ) e^{-st_0}\quad(t_0>0) est0(t0>0)
1 2 π δ ( ω ) 2\pi δ(ω) 2πδ(ω) 1 s ( Re  s > 0 ) \dfrac{1}{s}\quad(\text{Re }s>0) s1(Re s>0)
e − i ω 0 t e^{-\text{i}ω_0 t} eiω0t 2 π δ ( ω − ω 0 ) 2\pi δ(ω−ω_0) 2πδ(ωω0)
t t t 1 s 2 ( Re  s > 0 ) \dfrac{1}{s^2}\quad(\text{Re }s>0) s21(Re s>0)
t m ( m ∈ Z ) t^m\quad(m\in\Z) tm(mZ) m ! s m + 1 ( Re  s > 0 ) \dfrac{m!}{s^{m+1}}\quad(\text{Re }s>0) sm+1m!(Re s>0)
t a ( a > − 1 ) t^a\quad(a>-1) ta(a>1) Γ ( a + 1 ) s a + 1 ( Re  s > 0 ) \dfrac{\Gamma(a+1)}{s^{a+1}}\quad(\text{Re }s>0) sa+1Γ(a+1)(Re s>0)
e − a t ( a ⩾ 0 ) e^{-at}\quad(a⩾0) eat(a0) 1 a + i ω \dfrac{1}{a+\text{i}ω} a+iω1 1 s + a ( Re  s + a > 0 ) \dfrac{1}{s+a}\quad(\text{Re }s+a>0) s+a1(Re s+a>0)
t e − a t ( a ⩾ 0 ) te^{-at}\quad(a⩾0) teat(a0) 1 ( s + a ) 2 ( Re  s + a > 0 ) \dfrac{1}{(s+a)^2}\quad(\text{Re }s+a>0) (s+a)21(Re s+a>0)
u ( t ) = { 0 t < 0 1 t > ​ 0 u(t)=\begin{cases} 0 & t<0 \\ 1 &t>​0 \end{cases} u(t)={01t<0t>0 π δ ( ω ) + 1 i ω \pi δ(ω)+\dfrac{1}{\text{i}ω} πδ(ω)+iω1 1 s ( Re  s > 0 ) \dfrac{1}{s}\quad(\text{Re }s>0) s1(Re s>0)
sgn ( t ) = { − 1 t < 0 1 t > 0 \text{sgn}(t)=\begin{cases}-1&t<0 \\ 1 &t >0 \end{cases} sgn(t)={11t<0t>0 2 i ω \dfrac{2}{\text{i}ω} iω2
rect ( t ) = { 1 ∣ t ∣ < a 0 ∣ t ∣ > a \text{rect}(t)=\begin{cases}1&\mid t\mid <a \\ 0 &\mid t\mid >a \end{cases} rect(t)={10t<at>a 2 sin ⁡ ( a ω ) ω \dfrac{2\sin(aω)}{ω} ω2sin(aω)
cos ⁡ ω 0 t \cosω_0t cosω0t π [ δ ( ω − ω 0 ) + δ ( ω + ω 0 ) ] \pi [δ(ω-ω_0)+δ(ω+ω_0)] π[δ(ωω0)+δ(ω+ω0)] s s 2 + ω 0 2 ( Re  s > 0 ) \dfrac{s}{s^2+ω_0^2}\quad(\text{Re }s>0) s2+ω02s(Re s>0)
sin ⁡ ω 0 t \sinω_0t sinω0t i π [ δ ( ω + ω 0 ) − δ ( ω − ω 0 ) ] \text{i}\pi [δ(ω+ω_0)-δ(ω-ω_0)] iπ[δ(ω+ω0)δ(ωω0)] ω 0 s 2 + ω 0 2 ( Re  s > 0 ) \dfrac{ω_0}{s^2+ω_0^2}\quad(\text{Re }s>0) s2+ω02ω0(Re s>0)
e − a 2 t 2 e^{-a^2t^2} ea2t2 π a exp ⁡ ( − ω 2 4 a 2 ) \cfrac{\sqrt{\pi}}{a}\exp(-\cfrac{ω^2}{4a^2}) aπ exp(4a2ω2)
sin ⁡ ω 0 t t \cfrac{\sinω_0t}{t} tsinω0t { π ∣ ω ∣ < ω 0 0 ∣ ω ∣ > ω 0 \begin{cases} \pi & \vert ω \vert<ω_0 \\ 0 & \vert ω \vert>ω_0 \end{cases} {π0ω<ω0ω>ω0

非齐次项为 δ δ δ 函数的常微分方程

在传统意义下,非齐次项为 δ δ δ 函数的常微分方程没有意义。

  • 正当 δ δ δ 函数应当理解为连续函数序列 { δ n ( x ) } \{δ_n(x)\} {δn(x)} 的极限一样,这类常微分方程也应当理解为非齐次项为 δ n ( x ) δ_n(x) δn(x) 的常微分方程的极限。
  • 这类常微分方程的解也应当理解为非齐次项为 δ n ( x ) δ_n(x) δn(x) 的常微分方程的解的极限(先解微分方程再取极限)。
  • 引进 δ δ δ 函数的好处就在于可以直接处理这类极限情形的微分方程求解问题,而不必考虑具体的函数序列以及它的极限过程。
  • 正因为 δ \delta δ 函数不是传统意义下的函数,使得这类常微分方程的解具有独特的连续性质。就二阶常微分方程而言,我们将要看到,它的解是连续的,但是解的一阶导数不连续。正是由于一阶导数的不连续,才使得它正好是非齐次项为 δ δ δ 函数的常微分方程。

非齐次项为 δ δ δ 函数的常微分方程,这是一种特殊的非齐次方程,除了使用 δ \delta δ 函数的个别点外,方程是齐次的,使得这种非齐次常微分方程又很容易求解,特殊情形下甚至可以直接积分求解。

示例 1:求解初值问题(初位移和初速度为 0 的物体,在 t 0 t_0 t0 时刻受到瞬时冲量)
{ d 2 s d t 2 = δ ( t − t 0 ) t > 0 , t 0 > 0 s ∣ t = 0 = 0 , d s d t ∣ t = 0 = 0 \begin{cases} \cfrac{d^2s}{dt^2}=\delta(t-t_0) & t>0,t_0>0 \\ s|_{t=0}=0,\quad \cfrac{ds}{dt}|_{t=0}=0 \end{cases} dt2d2s=δ(tt0)st=0=0,dtdst=0=0t>0,t0>0
解:直接积分
d s d t = u ( t − t 0 ) + c 1 \cfrac{ds}{dt}=u(t-t_0)+c_1 dtds=u(tt0)+c1
其中函数 u ( t ) u(t) u(t) 为单位阶跃函数2,再次积分
s = ( t − t 0 ) u ( t − t 0 ) + c 1 t + c 2 s=(t-t_0)u(t-t_0)+c_1t+c_2 s=(tt0)u(tt0)+c1t+c2
带入初始条件可得
c 1 = c 2 = 0 c_1=c_2=0 c1=c2=0
于是
s = ( t − t 0 ) u ( t − t 0 ) s=(t-t_0)u(t-t_0) s=(tt0)u(tt0)

示例 2:求解边值问题(物体在 t = a , b t=a,b t=a,b 时刻的位移为 0,在 t 0 t_0 t0 时刻受到瞬时冲量)
{ d 2 s d t 2 = δ ( t − t 0 ) 0 < a < t 0 < b s ∣ t = a = 0 , s ∣ t = b = 0 \begin{cases} \cfrac{d^2s}{dt^2}=\delta(t-t_0) & 0<a<t_0<b \\ s|_{t=a}=0,\quad s|_{t=b}=0 \end{cases} dt2d2s=δ(tt0)st=a=0,st=b=00<a<t0<b
解:直接积分可求得
s = ( t − t 0 ) u ( t − t 0 ) + v 1 t + v 2 s=(t-t_0)u(t-t_0)+v_1t+v_2 s=(tt0)u(tt0)+v1t+v2
带入初始条件可解得
{ v 1 = − b − t 0 b − a v 2 = − v 1 a \begin{cases} v_1=-\cfrac{b-t_0}{b-a} \\ v_2=-v_1a \end{cases} v1=babt0v2=v1a
于是
s = ( t − t 0 ) u ( t − t 0 ) − b − t 0 b − a ( t − a ) s=(t-t_0)u(t-t_0)-\frac{b-t_0}{b-a}(t-a) s=(tt0)u(tt0)babt0(ta)


  1. 卷积(Convolution):设函数 f 1 ( t ) , f 2 ( t ) f_1(t),f_2(t) f1(t),f2(t) ( − ∞ , ∞ ) (-\infty,\infty) (,)上绝对可积,则积分 ∫ − ∞ + ∞ f 1 ( τ ) f 2 ( t − τ ) d τ \displaystyle\int^{+\infty}_{-\infty}f_1(τ)f_2(t-τ)dτ +f1(τ)f2(tτ)dτ 称为 f 1 ( t ) , f 2 ( t ) f_1(t),f_2(t) f1(t),f2(t)的卷积。记为 f 1 ( t ) ∗ f 2 ( t ) = ∫ − ∞ + ∞ f 1 ( τ ) f 2 ( t − τ ) d τ \displaystyle f_1(t)*f_2(t)=\int^{+\infty}_{-\infty}f_1(τ)f_2(t-τ)dτ f1(t)f2(t)=+f1(τ)f2(tτ)dτ
    如何通俗易懂地解释卷积?——知乎
    根据定义,卷积满足如下性质:
    (1) 交换律: f 1 ( t ) ∗ f 2 ( t ) = f 2 ( t ) ∗ f 1 ( t ) f_1(t)*f_2(t)=f_2(t)*f_1(t) f1(t)f2(t)=f2(t)f1(t)
    (2) 结合律: f 1 ∗ [ f 2 ∗ f 3 ] = [ f 1 ∗ f 2 ] ∗ f 3 f_1*[f_2*f_3]=[f_1*f_2]*f_3 f1[f2f3]=[f1f2]f3
    (3) 分配律: f 1 ∗ [ f 2 + f 3 ] = f 1 ∗ f 2 + f 1 ∗ f 3 f_1*[f_2+f_3]=f_1*f_2+f_1*f_3 f1[f2+f3]=f1f2+f1f3 ↩︎ ↩︎

  2. 单位阶跃函数(unit step function),也称Heaviside单位函数
    u ( t ) = { 0 t < 0 1 t > ​ 0 u(t)=\begin{cases} 0 & t<0 \\ 1 &t>​0 \end{cases} u(t)={01t<0t>0
    单位阶跃函数
    按广义函数理论,定义为
    ∫ − ∞ + ∞ u ( t ) f ( t ) d t = ∫ 0 + ∞ f ( t ) d t \displaystyle\int_{-∞}^{+∞}u(t)f(t)dt=\int_{0}^{+∞}f(t)dt +u(t)f(t)dt=0+f(t)dt
    单位阶跃函数的积分为:
    ∫ − ∞ t u ( τ ) d τ = t u ( t ) \int_{-\infty}^{t}u(\tau)\mathrm d\tau=tu(t) tu(τ)dτ=tu(t) ↩︎ ↩︎ ↩︎ ↩︎

  3. 在δ函数的Fourier变换中,其广义积分是根据δ函数的性质直接给出的,而不是按通常的积分方式得到的,称这种方式的Fourier 变换为广义Fourier 变换↩︎

  • 12
    点赞
  • 59
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值