复变函数和积分变换(Complex Function II)


复变函数和积分变换(Complex Function I)
复变函数和积分变换(Complex Function II)
复变函数和积分变换(Integral Transform)


参考文献:
mooc国防科技大学《复变函数》
王忠仁、张静《工程数学:复变函数和积分变换》
焦红伟、尹景本《复变函数与积分变换》
梁昆淼《数学物理方法》

级数(Series)

复变函数项级数

  • 复数项级数(complex number series):设 { z n } = z 1 , z 2 , ⋯   , z n , ⋯ \{z_n\}=z_1,z_2,\cdots,z_n,\cdots {zn}=z1,z2,,zn, 为一复数序列。
    (1) 称表达式 ∑ n = 1 ∞ z n = z 1 + z 2 + ⋯ + z n + ⋯ \displaystyle\sum_{n=1}^{∞}z_n=z_1+z_2+\cdots+z_n+\cdots n=1zn=z1+z2++zn+ 为复数项无穷级数。
    (2) 称 S n = z 1 + z 2 + ⋯ + z n S_n=z_1+z_2+\cdots+z_n Sn=z1+z2++zn为级数的部分和
    (3) 若极限 lim ⁡ n → ∞ S n = S \lim\limits_{n\to∞}S_n=S nlimSn=S 存在( S 为有限数),则称级数是收敛的, S 称为级数的和;如果序列 { S n } \{S_n\} {Sn}不收敛,则称级数是发散的。
    复数项级数收敛的充要条件:设 z n = x n + i y n ( n ∈ Z + ) z_n=x_n+iy_n(n\in\Z^+) zn=xn+iyn(nZ+) ,则 ∑ n = 1 ∞ z n \displaystyle\sum_{n=1}^{∞}z_n n=1zn收敛    ⟺    ∑ n = 1 ∞ x n , ∑ n = 1 ∞ y n \iff \displaystyle\sum_{n=1}^{∞}x_n,\sum_{n=1}^{∞}y_n n=1xn,n=1yn都收敛
    复数项级数收敛的必要条件 lim ⁡ n → ∞ z n = 0    ⟹    ∑ n = 1 ∞ z n \lim\limits_{n\to∞}z_n=0\implies\displaystyle\sum_{n=1}^{∞}z_n nlimzn=0n=1zn 收敛
    定理 1:如果 ∑ n = 1 ∞ ∣ z n ∣ \displaystyle\sum_{n=1}^{∞}|z_n| n=1zn 收敛,则 ∑ n = 1 ∞ z n \displaystyle\sum_{n=1}^{∞}z_n n=1zn 收敛,并且 ∣ ∑ n = 1 ∞ z n ∣ ⩽ ∑ n = 1 ∞ ∣ z n ∣ \displaystyle|\sum_{n=1}^{∞}z_n|⩽\sum_{n=1}^{∞}|z_n| n=1znn=1zn
    (1) 如果 ∑ n = 1 ∞ ∣ z n ∣ \displaystyle\sum_{n=1}^{∞}|z_n| n=1zn 收敛,则称级数 ∑ n = 1 ∞ z n \displaystyle\sum_{n=1}^{∞}z_n n=1zn绝对收敛(absolutely convergent)。
    (2) 非绝对收敛的收敛级数称为条件收敛(conditionally convergent)。
    由于 ∑ n = 1 ∞ ∣ z n ∣ \displaystyle\sum_{n=1}^{∞}|z_n| n=1zn是正项级数,其收敛性可以用正项级数的相关定理来进行判别。另外,还可得到 ∑ n = 1 ∞ ∣ z n ∣ \displaystyle\sum_{n=1}^{∞}|z_n| n=1zn收敛的充要条件是 ∑ n = 1 ∞ x n , ∑ n = 1 ∞ y n \displaystyle\sum_{n=1}^{∞}x_n,\sum_{n=1}^{∞}y_n n=1xn,n=1yn都绝对收敛

  • 复变函数项级数:设区域D上的函数列 { f n ( z ) } = f 1 ( z ) , f 2 ( z ) , ⋯   , f n ( z ) , ⋯ \{f_n(z)\}=f_1(z),f_2(z),\cdots,f_n(z),\cdots {fn(z)}=f1(z),f2(z),,fn(z),
    (1) 称 ∑ n = 1 ∞ f n ( z ) = f 1 ( z ) + f 2 ( z ) + ⋯ + f n ( z ) + ⋯ \displaystyle\sum_{n=1}^{∞}f_n(z)=f_1(z)+f_2(z)+\cdots+f_n(z)+\cdots n=1fn(z)=f1(z)+f2(z)++fn(z)+为区域D 内的复变函数项级数(series)。
    (2) 该级数的前n 项和 S n ( z ) S_n(z) Sn(z) 称为这个级数的部分和((partial sum))。
    (3) 如果对于区域D 内的某一点 z 0 z_0 z0 ,极限 lim ⁡ n → ∞ S n ( z 0 ) = S ( z 0 ) \lim\limits_{n\to∞}S_n(z_0)=S(z_0) nlimSn(z0)=S(z0)存在,则称级数 ∑ n = 1 ∞ f n ( z ) \displaystyle\sum_{n=1}^{∞}f_n(z) n=1fn(z) z 0 z_0 z0收敛(convergence),称 S ( z 0 ) S(z_0) S(z0)为它的(sum)。
    (4) 如果级数在 D 内处处收敛,那么它的和一定是与z有关的一个函数 S ( z ) = f 1 ( z ) + f 2 ( z ) + ⋯ + f n ( z ) + ⋯ S(z) = f_1(z)+f_2(z)+\cdots+f_n(z)+\cdots S(z)=f1(z)+f2(z)++fn(z)+,这个函数称为级数的和函数(summable function)。
    关于复数项级数与复变函数项级数,由于这两类级数的有关定义、性质与判别法与高等数学的相应部分极为相似,所以,不再赘述。
    (5) 一致收敛(uniform convergence):如果对于任意 ϵ > 0 ϵ>0 ϵ>0 ,存在 N > 0 N>0 N>0,对于任何的 z ∈ D z\in D zD,当 n > N n>N n>N时,恒有 ∣ ∑ k = 1 n f k ( z ) − f ( z ) ∣ < ϵ , ∀ x ∈ D |\displaystyle\sum_{k=1}^{n}f_k(z)-f(z)|<ϵ,∀ x\in D k=1nfk(z)f(z)<ϵ,xD,则称级数 ∑ n = 1 ∞ f n ( z ) \displaystyle\sum_{n=1}^{∞}f_n(z) n=1fn(z)在D上一致收敛于函数 f ( z ) f(z) f(z)
    定理 (Weierstrass M-test):如果级数 ∑ n = 1 ∞ f n ( z ) \displaystyle\sum_{n=1}^{∞}f_n(z) n=1fn(z)在区域 D D D满足条件:
    (i) ∀ z ∈ D , ∣ f n ( z ) ∣ ⩽ M n ( n = 1 , 2 , ⋯   ) ∀ z\in D,|f_n(z)|⩽ M_n(n=1,2,\cdots) zD,fn(z)Mn(n=1,2,)
    (ii)正项级数 ∑ n = 1 ∞ M n \displaystyle\sum_{n=1}^{∞}M_n n=1Mn收敛
    则级数 ∑ n = 1 ∞ f n ( z ) \displaystyle\sum_{n=1}^{∞}f_n(z) n=1fn(z)在区间 D D D上一致收敛
    (6) 内闭一致收敛(Closed uniform convergence):设函数 f n ( z ) ( n ∈ Z + ) f_n(z)(n\in\Z^+) fn(z)(nZ+) 定义在区域G 内,若级数 ∑ n = 1 ∞ f n ( z ) \displaystyle\sum_{n=1}^{∞}f_n(z) n=1fn(z)在G 内任意一个有界闭集上均一致收敛,则称该级数在区域G 内内闭一致收敛于 f ( z ) f(z) f(z)
    定理:如果级数 ∑ n = 1 ∞ f n ( z ) \displaystyle\sum_{n=1}^{∞}f_n(z) n=1fn(z)在区域 D D D内解析,级数 ∑ n = 1 ∞ f n ( z ) \displaystyle\sum_{n=1}^{∞}f_n(z) n=1fn(z)在D内内闭一致收敛于 f ( z ) f(z) f(z),则
    (i) f ( z ) f(z) f(z)在D内解析
    (ii) f ( p ) ( z ) = ∑ n = 1 ∞ f n ( p ) ( z ) ( p ∈ Z + ) f^{(p)}(z)=\displaystyle\sum_{n=1}^{∞}f_n^{(p)}(z)\quad(p\in\Z^+) f(p)(z)=n=1fn(p)(z)(pZ+)

幂级数

  • 幂级数(Power Series):称形如 ∑ n = 0 ∞ a n ( z − z 0 ) n = a 0 + a 1 ( z − z 0 ) + ⋯ + a n ( z − z 0 ) n + ⋯ \displaystyle\sum_{n=0}^{∞}a_n(z-z_0)^n=a_0+a_1(z-z_0)+\cdots+a_n(z-z_0)^n+\cdots n=0an(zz0)n=a0+a1(zz0)++an(zz0)n+的级数称为幂级数,其中 z 0 , a 0 , a 1 , ⋯   , a n , ⋯ z_0,a_0,a_1,\cdots,a_n,\cdots z0,a0,a1,,an,为复常数。
    特别令 z 0 = 0 z_0=0 z0=0 ∑ n = 0 ∞ a n z n \displaystyle\sum_{n=0}^{∞}a_nz^n n=0anzn,只要做变换 ξ = z − z 0 ξ=z-z_0 ξ=zz0即可化为一般形式,为了方便常讨论此形式。

  • 幂级数的收敛圆(circle of convergence)
    阿贝尔(Abel)定理:若级数 ∑ n = 0 ∞ a n z n \displaystyle\sum_{n=0}^{∞}a_nz^n n=0anzn在点 a ( a ≠ 0 ) a (a≠0) a(a=0) 收敛,则它在圆域 K : ∣ z ∣ < ∣ a ∣ K : |z|<|a| K:z<a 内绝对收敛;在闭圆 K 1 : ∣ z ∣ ⩽ ρ ( ρ < a ) K_1 : |z| ⩽ρ (ρ < a ) K1:zρ(ρ<a)上一致收敛。
    若级数 ∑ n = 0 ∞ a n z n \displaystyle\sum_{n=0}^{∞}a_nz^n n=0anzn在点 b ( b ≠ 0 ) b (b≠0) b(b=0) 发散,则它在 ∣ z ∣ > ∣ b ∣ |z| > |b| z>b 时发散。
    有了阿贝尔定理便可弄清幂级数的收敛范围。
    首先,幂级数在点z =0 是收敛的。
    其次,幂级数在z ≠0 时只有三种可能:
    (1) 幂级数在复平面所有的点收敛(如 1 + z 1 ! + z 2 2 ! + ⋯ + z n n ! + ⋯ 1+\frac{z}{1!}+\frac{z^2}{2!}+\cdots+\frac{z^n}{n!}+\cdots 1+1!z+2!z2++n!zn+);
    (2) 幂级数在复平面所有的点发散(如 1 + 2 z + 2 2 z 2 + ⋯ + 2 n z n + ⋯ 1+ 2z + 2^2 z^2 +\cdots+ 2^n z^n +\cdots 1+2z+22z2++2nzn+);
    (3) 存在一个圆域 ∣ z ∣ < R |z|<R z<R,幂级数在圆域内收敛(且绝对收敛),在 ∣ z ∣ > R |z|>R z>R上幂级数发散。圆周 C : ∣ z ∣ = R C : |z| = R C:z=R称为该级数的收敛圆(circle of convergence),R称为该级数的收敛半径(radius of convergence)。
    为了统一起见,对于幂级数在复平面收敛,规定 R = + ∞ R = +∞ R=+,对于幂级数仅在一点 z =0 收敛,规定 R = 0 R = 0 R=0
    定理 1:设幂级数为 ∑ n = 0 ∞ a n z n \displaystyle\sum_{n=0}^{∞}a_nz^n n=0anzn,幂级数收敛半径的具体求法,同实函数一样,比值法和根值法是最常用的有效方法。
    (1) 比值法:若 lim ⁡ n → ∞ ∣ a n + 1 a n ∣ = λ \lim\limits_{n\to∞}|\dfrac{a_{n+1}}{a_n}|=λ nlimanan+1=λ 则收敛半径为 R = 1 λ R=\dfrac{1}{λ} R=λ1
    (2) 根值法: lim ⁡ n → ∞ ∣ a n ∣ n = ρ \lim\limits_{n\to∞}\sqrt[n]{|a_n|}=ρ nlimnan =ρ 则收敛半径为 R = 1 ρ R=\dfrac{1}{ρ} R=ρ1

实例

  1. 求幂级数 ∑ n = 0 ∞ z n \displaystyle\sum_{n=0}^{∞}z^n n=0zn的收敛半径
    解:级数的部分和 S n = 1 − z n 1 − z ( z ≠ 1 ) S_n=\dfrac{1-z^n}{1-z}\quad(z\neq 1) Sn=1z1zn(z=1)
    (1) 当 ∣ z ∣ < 1 |z|<1 z<1时,有 lim ⁡ n → ∞ z n = 0 \lim\limits_{n\to∞}z^n=0 nlimzn=0,从而 lim ⁡ n → ∞ S n = 1 1 − z \lim\limits_{n\to∞}S_n=\dfrac{1}{1-z} nlimSn=1z1,级数收敛
    (2) 当 ∣ z ∣ ⩽ 1 |z|⩽1 z1时,级数的一般项 z n z^n zn不趋近于零,级数发散。
    由阿贝尔定理知级数的收敛半径为 R = 1 R=1 R=1,并且函数 1 1 − z = ∑ n = 0 ∞ z n ( ∣ z ∣ < 1 ) \dfrac{1}{1-z}=\displaystyle\sum_{n=0}^{∞}z^n\quad(|z|<1) 1z1=n=0zn(z<1)
  2. 函数 1 z − b \dfrac{1}{z-b} zb1也可通过变换表示成幂级数
    1 z − b = 1 ( z − a ) − ( b − a ) = − 1 b − a ⋅ 1 1 − z − a b − a \dfrac{1}{z-b}=\dfrac{1}{(z-a)-(b-a)}=-\cfrac{1}{b-a}\cdot\cfrac{1}{1- \cfrac{z-a}{b-a}} zb1=(za)(ba)1=ba11baza1
    ∣ z − a b − a ∣ < 1 |\dfrac{z-a}{b-a}|<1 baza<1时,即 ∣ z − a ∣ < ∣ b − a ∣ |z-a|<|b-a| za<ba,可以得到
    1 z − b = − ∑ n = 0 ∞ 1 ( b − a ) n + 1 ( z − a ) n \displaystyle\dfrac{1}{z-b}=-\sum_{n=0}^{∞}\dfrac{1}{(b-a)^{n+1}}(z-a)^n zb1=n=0(ba)n+11(za)n
  • 和函数的解析性
    定理 2:设幂级数 ∑ n = 0 ∞ a n ( z − z 0 ) n \displaystyle\sum_{n=0}^{∞}a_n(z-z_0)^n n=0an(zz0)n的收敛半径为R,则
    (1) 它的和函数 f ( z ) f(z) f(z) 在收敛圆内解析
    (2) 幂级数在收敛圆内可逐项求导任意次,即 f ( k ) ( z ) = ∑ n = 0 ∞ [ a n ( z − z 0 ) n ] ( k ) f^{(k)}(z)=\displaystyle\sum_{n=0}^{∞}[a_n(z-z_0)^n]^{(k)} f(k)(z)=n=0[an(zz0)n](k)
    (3) 幂级数在收敛圆内任一曲线C 上逐项积分,即
    ∫ C f ( z ) d z = ∫ z 0 z f ( z ) d z = ∑ n = 0 ∞ a n n + 1 ( z − z 0 ) n + 1 \displaystyle\int_{C}f(z)dz=\int_{z_0}^zf(z)dz=\sum_{n=0}^{∞}\dfrac{a_n}{n+1}(z-z_0)^{n+1} Cf(z)dz=z0zf(z)dz=n=0n+1an(zz0)n+1

泰勒级数

  • 泰勒定理:若函数 f ( z ) f(z) f(z)在区域D内解析,圆域 K : ∣ z − z 0 ∣ < R K:|z-z_0|<R K:zz0<R含于D,则在K内有
    f ( z ) = ∑ n = 0 ∞ a n ( z − z 0 ) n f(z)=\displaystyle\sum_{n=0}^{∞}a_n(z-z_0)^n f(z)=n=0an(zz0)n,其中 a n = 1 n ! f ( n ) ( z 0 ) ( n = 0 , 1 , 2 , ⋯   ) a_n=\dfrac{1}{n!}f^{(n)}(z_0)\quad (n=0,1,2,\cdots) an=n!1f(n)(z0)(n=0,1,2,)
    且上述展开式是唯一的,上式被称为泰勒展开式(Taylor expansion),它右端的级数称为泰勒级数。
    泰勒级数
    证明: 取一点 z ∈ K z\in K zK,做圆周 C : ∣ z − z 0 ∣ = ρ C:|z-z_0|=ρ C:zz0=ρ 包含点 z
    由柯西积分公式有 f ( z ) = 1 2 π i ∮ C f ( ξ ) ξ − z d ξ \displaystyle f(z)=\dfrac{1}{2\pi i}\oint_C \frac{f(ξ)}{ξ-z}dξ f(z)=2πi1Cξzf(ξ)dξ
    由于 ∣ z − z 0 ξ − z 0 ∣ < 1 |\dfrac{z-z_0}{ξ-z_0}|<1 ξz0zz0<1,有上节实例可知 1 ξ − z = ∑ n = 0 ∞ ( ξ − z 0 ) n ( z − z 0 ) n + 1 \displaystyle\dfrac{1}{ξ-z}=\sum_{n=0}^{∞}\dfrac{(ξ-z_0)^n}{(z-z_0)^{n+1}} ξz1=n=0(zz0)n+1(ξz0)n ,带入上式可得
    f ( z ) = ∑ n = 0 ∞ a n ( z − z 0 ) n f(z)=\displaystyle\sum_{n=0}^{∞}a_n(z-z_0)^n f(z)=n=0an(zz0)n,其中 a n = 1 n ! f ( n ) ( z 0 ) a_n=\dfrac{1}{n!}f^{(n)}(z_0) an=n!1f(n)(z0)
    关于展开式的唯一性,证明略。
    推论:将泰勒定理和上节的定理2结合,可以得到一个重要结论
    函数 f ( z ) f(z) f(z)在一点 z 0 z_0 z0处解析的充要条件是:它在 z 0 z_0 z0的某一邻域内有幂级数展开式 f ( z ) = ∑ n = 0 ∞ a n ( z − z 0 ) n f(z)=\displaystyle\sum_{n=0}^{∞}a_n(z-z_0)^n f(z)=n=0an(zz0)n
    这个性质从级数的角度深刻反映了解析函数的本质。

  • 函数在 z=0 处的泰勒展开式
    e z = ∑ n = 0 ∞ 1 n ! z n ( z ∈ C ) sin ⁡ z = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! z 2 n + 1 ( z ∈ C ) cos ⁡ z = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! z 2 n ( z ∈ C ) 1 1 − z = ∑ n = 0 ∞ z n ( ∣ z ∣ < 1 ) 1 ( 1 + z ) 2 = ∑ n = 0 ∞ ( − 1 ) n − 1 n z n − 1 ( ∣ z ∣ < 1 ) \begin{aligned} & e^z=\displaystyle\sum_{n=0}^{∞}\dfrac{1}{n!}z^n & (z\in\Complex) \\ & \sin z=\displaystyle\sum_{n=0}^{∞}\dfrac{(-1)^n}{(2n+1)!}z^{2n+1} & (z\in\Complex) \\ & \cos z=\displaystyle\sum_{n=0}^{∞}\dfrac{(-1)^n}{(2n)!}z^{2n} & (z\in\Complex) \\ & \dfrac{1}{1-z}=\displaystyle\sum_{n=0}^{∞}z^n & (|z|<1) \\ & \dfrac{1}{(1+z)^2}=\displaystyle\sum_{n=0}^{∞}(-1)^{n-1}nz^{n-1} & (|z|<1) \end{aligned} ez=n=0n!1znsinz=n=0(2n+1)!(1)nz2n+1cosz=n=0(2n)!(1)nz2n1z1=n=0zn(1+z)21=n=0(1)n1nzn1(zC)(zC)(zC)(z<1)(z<1)
    Ln  ( 1 + z ) \text{Ln }(1+z) Ln (1+z)的主值支 ln ⁡ ( 1 + z ) = ∑ n = 0 ∞ ( − 1 ) n n + 1 z n + 1 ( ∣ z ∣ < 1 ) \ln (1+z)=\displaystyle\sum_{n=0}^{∞}\dfrac{(-1)^n}{n+1}z^{n+1}\quad (|z|<1) ln(1+z)=n=0n+1(1)nzn+1(z<1)
    ( 1 + z ) α (1+z)^α (1+z)α的主值支 e α ln ⁡ ( 1 + z ) = 1 + α z + ( α 2 ) z 2 + ⋯ + ( α n ) z n + ⋯ ( ∣ z ∣ < 1 ) e^{α\ln(1+z)}=1+αz+\binom{α}{2}z^2+\cdots+\binom{α}{n}z^n+\cdots \quad(|z|<1) eαln(1+z)=1+αz+(2α)z2++(nα)zn+(z<1)
    其中 ( α n ) = α ( α − 1 ) ⋯ ( α − n + 1 ) n ! \binom{α}{n}=\frac{α(α-1)\cdots(α-n+1)}{n!} (nα)=n!α(α1)(αn+1)

洛朗级数

  • 洛朗级数(Laurent Series):称形如 ∑ n = − ∞ + ∞ a n ( z − z 0 ) n = ⋯ + a − n ( z − z 0 ) − n + ⋯ + a − 1 ( z − z 0 ) − 1 + a 0 + a 1 ( z − z 0 ) + ⋯ + a n ( z − z 0 ) n + ⋯ \displaystyle\sum_{n=-∞}^{+∞}a_n(z-z_0)^n=\cdots+a_{-n}(z-z_0)^{-n}+\cdots+a_{-1}(z-z_0)^{-1}+a_0+a_1(z-z_0)+\cdots+a_n(z-z_0)^n+\cdots n=+an(zz0)n=+an(zz0)n++a1(zz0)1+a0+a1(zz0)++an(zz0)n+的级数称为洛朗级数,其中 z 0 , a n ( n ∈ Z ) z_0,a_n(n\in\Z) z0,an(nZ)为复常数。
    洛朗级数由正幂次项 ∑ n = 0 ∞ a n ( z − z 0 ) n \displaystyle\sum_{n=0}^{∞}a_n(z-z_0)^n n=0an(zz0)n和负幂次项 ∑ n = − 1 − ∞ a n ( z − z 0 ) n \displaystyle\sum_{n=-1}^{-∞}a_n(z-z_0)^n n=1an(zz0)n组成,分别称为洛朗级数的解析部分主要部分。若解析部分和主要部分在点 z = ξ z=ξ z=ξ收敛,则洛朗级数在点 z = ξ z=ξ z=ξ收敛。

  • 收敛圆环(ring of convergence):显然洛朗级数的收敛域是解析部分和主要部分收敛域的交集。
    (1) 对于解析部分,设其收敛半径为R,其收敛圆域为 ∣ z − z 0 ∣ < R |z-z_0|<R zz0<R
    (2) 对于主要部分,令 ξ = ( z − z 0 ) − 1 ξ=(z-z_0)^{-1} ξ=(zz0)1,并令 b n = a − n b_n=a_{-n} bn=an,则级数变形为ξ的幂级数 ∑ n = 1 ∞ b n ξ n \displaystyle\sum_{n=1}^{∞}b_nξ^n n=1bnξn,设它的收敛半径为 R 1 R_1 R1,其收敛圆域为 ∣ ξ ∣ < R 1 |ξ|<R_1 ξ<R1
    于是对于洛朗级数主要部分,当 ∣ 1 z − z 0 ∣ < R 1 |\frac{1}{z-z_0}|<R_1 zz01<R1 ∣ z − z 0 ∣ > 1 R 1 |z-z_0|>\frac{1}{R_1} zz0>R11 时收敛。
    (3) 令 r = 1 R 1 r=\frac{1}{R_1} r=R11,由上面的讨论可知
    r < R r<R r<R,则洛朗级数的收敛域为 r < ∣ z − z 0 ∣ < R r<|z-z_0|<R r<zz0<R,此圆环称为收敛圆环。且知它在该圆环内绝对收敛,在闭圆环 r < r ′ ⩽ z − z 0 ⩽ R ′ < R r < r'⩽ z − z_0 ⩽R' < R r<rzz0R<R上一致收敛。

  • 洛朗定理:设 f ( z ) f(z) f(z)在圆环域 D : R 1 < ∣ z − z 0 ∣ < R 2 D:R_1<|z-z_0|<R_2 D:R1<zz0<R2 内解析,则 f ( z ) f(z) f(z)在此圆环内一定能展开为 f ( z ) = ∑ n = − ∞ + ∞ a n ( z − z 0 ) n f(z)=\displaystyle\sum_{n=-∞}^{+∞}a_n(z-z_0)^n f(z)=n=+an(zz0)n ,并且系数 a n a_n an f ( z ) f(z) f(z)及圆环唯一确定。
    其中 a n = 1 2 π i ∮ C f ( ξ ) ( ξ − z 0 ) n + 1 d ξ ( n ∈ Z ) \displaystyle a_n=\dfrac{1}{2\pi i}\oint_C \dfrac{f(ξ)}{(ξ-z_0)^{n+1}}dξ(n\in\Z) an=2πi1C(ξz0)n+1f(ξ)dξ(nZ) ,C为此圆环内围绕 z 0 z_0 z0的任何一条正向简单闭曲线,此公式称为洛朗展开式(Laurent expansion)。
    洛朗定理

实例

  1. 求函数 f ( z ) = 1 ( z − 1 ) ( z − 2 ) f(z)=\dfrac{1}{(z-1)(z-2)} f(z)=(z1)(z2)1分别在下列圆环的洛朗展开式
    ( 1 )   0 < ∣ z ∣ < 1 ; ( 2 )   1 < ∣ z ∣ < 2 ; ( 3 )   2 < ∣ z ∣ < + ∞ (1)\ 0<|z|<1 ;\quad (2)\ 1<|z|<2;\quad (3)\ 2<|z|<+∞ (1) 0<z<1;(2) 1<z<2;(3) 2<z<+
    洛朗展开
    解:部分分式分解 f ( z ) = 1 1 − z − 1 2 − z f(z)=\dfrac{1}{1-z}-\dfrac{1}{2-z} f(z)=1z12z1
    (1) 在 0 < ∣ z ∣ < 1 0<|z|<1 0<z<1中有 ∣ z ∣ < 1 , ∣ z 2 ∣ < 1 |z|<1,|\frac{z}{2}|<1 z<1,2z<1,由上一章的实例知
    1 1 − z = ∑ n = 0 ∞ z n ; 1 2 − z = ∑ n = 0 ∞ z n 2 n + 1 \displaystyle\frac{1}{1-z}=\sum_{n=0}^{∞}z^n;\quad \frac{1}{2-z}=\sum_{n=0}^{∞}\frac{z^n}{2^{n+1}} 1z1=n=0zn;2z1=n=02n+1zn
    于是 f ( z ) = ∑ n = 0 ∞ z n − ∑ n = 0 ∞ z n 2 n + 1 = ∑ n = 0 ∞ ( 1 − 1 2 n + 1 ) z n \displaystyle f(z)=\sum_{n=0}^{∞}z^n-\sum_{n=0}^{∞}\frac{z^n}{2^{n+1}}=\sum_{n=0}^{∞}(1-\frac{1}{2^{n+1}})z^n f(z)=n=0znn=02n+1zn=n=0(12n+11)zn
    上述结果中不含 z 的负幂项,原因在于 f ( z ) f(z) f(z) z = 0 z=0 z=0处解析。
    (2) 在 1 < ∣ z ∣ < 2 1<|z|<2 1<z<2中有 ∣ 1 z ∣ < 1 , ∣ z 2 ∣ < 1 |\frac{1}{z}|<1,|\frac{z}{2}|<1 z1<1,2z<1,由上一章的实例知
    1 1 − z = − ∑ n = 0 ∞ 1 z n + 1 ; 1 2 − z = ∑ n = 0 ∞ z n 2 n + 1 \displaystyle\frac{1}{1-z}=-\sum_{n=0}^{∞}\frac{1}{z^{n+1}};\quad \frac{1}{2-z}=\sum_{n=0}^{∞}\frac{z^n}{2^{n+1}} 1z1=n=0zn+11;2z1=n=02n+1zn
    于是 f ( z ) = − ∑ n = 0 ∞ 1 z n + 1 − ∑ n = 0 ∞ z n 2 n + 1 \displaystyle f(z)=-\sum_{n=0}^{∞}\frac{1}{z^{n+1}}-\sum_{n=0}^{∞}\frac{z^n}{2^{n+1}} f(z)=n=0zn+11n=02n+1zn
    (3) 在 2 < ∣ z ∣ < + ∞ 2<|z|<+∞ 2<z<+ 中有 ∣ 1 z ∣ < 1 , ∣ 2 z ∣ < 1 |\frac{1}{z}|<1,|\frac{2}{z}|<1 z1<1,z2<1,由上一章的实例知
    1 1 − z = − ∑ n = 0 ∞ 1 z n + 1 ; 1 2 − z = − ∑ n = 0 ∞ 2 n z n + 1 \displaystyle\frac{1}{1-z}=-\sum_{n=0}^{∞}\frac{1}{z^{n+1}};\quad \frac{1}{2-z}=-\sum_{n=0}^{∞}\frac{2^n}{z^{n+1}} 1z1=n=0zn+11;2z1=n=0zn+12n
    于是 f ( z ) = ∑ n = 0 ∞ 2 n − 1 z n + 1 \displaystyle f(z)=\sum_{n=0}^{∞}\frac{2^n-1}{z^{n+1}} f(z)=n=0zn+12n1
  2. 求函数在 f ( z ) = sin ⁡ z z f(z)=\dfrac{\sin z}{z} f(z)=zsinz 0 < ∣ z ∣ < ∞ 0<|z|<∞ 0<z<的洛朗展开式
    f ( z ) = sin ⁡ z z = 1 z ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! z 2 n + 1 = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! z 2 n \displaystyle f(z)=\dfrac{\sin z}{z}=\dfrac{1}{z}\sum_{n=0}^{∞}\dfrac{(-1)^n}{(2n+1)!}z^{2n+1}=\sum_{n=0}^{∞}\dfrac{(-1)^n}{(2n+1)!}z^{2n} f(z)=zsinz=z1n=0(2n+1)!(1)nz2n+1=n=0(2n+1)!(1)nz2n
  3. 计算 ∮ C e 1 z d z \displaystyle\oint_C e^{\frac{1}{z}}dz Cez1dz,其中C 为正向圆周 ∣ z ∣ = 1 |z|=1 z=1
    由于 e 1 z = 1 + 1 z + 1 2 ! z 2 + ⋯ + 1 n ! z n + ⋯ \displaystyle e^{\frac{1}{z}}=1+\frac{1}{z}+\frac{1}{2!z^2}+\cdots+\frac{1}{n!z^n}+\cdots ez1=1+z1+2!z21++n!zn1+
    在洛朗展开式的系数中,在 n = − 1 n=-1 n=1时,有 a − 1 = 1 2 π i ∮ C f ( z ) d z \displaystyle a_{-1}=\dfrac{1}{2\pi i}\oint_C f(z)dz a1=2πi1Cf(z)dz
    于是有 ∮ C e 1 z d z = 2 π i \displaystyle\oint_C e^{\frac{1}{z}}dz=2\pi i Cez1dz=2πi

孤立奇点

孤立奇点:设函数 f ( z ) f (z) f(z) z 0 z_0 z0不解析,但在 z 0 z_0 z0的某个去心邻域 0 < ∣ z − z 0 ∣ < R 0 < |z − z_0| < R 0<zz0<R内解析,则称点 z 0 z_0 z0为函数 f ( z ) f(z) f(z)孤立奇点(isolated singular point)。

  • 孤立奇点的类型:设点 z 0 z_0 z0为函数 f ( z ) f(z) f(z)的孤立奇点
    (1) 若 f ( z ) f(z) f(z) 在点 z 0 z_0 z0的洛朗级数的主要部分为零,则称点 z 0 z_0 z0 f ( z ) f(z) f(z)可去奇点(removable singularity)
    (2) 若 f ( z ) f(z) f(z) 在点 z 0 z_0 z0的洛朗级数的主要部分有限多项,即存在正整数m, a − m ≠ 0 a_{-m}\neq 0 am=0,当 n < − m , a n = 0 n<-m,a_{n}=0 n<m,an=0,则称点 z 0 z_0 z0 f ( z ) f(z) f(z)m级(阶)极点(m-order pole)
    (3) 若 f ( z ) f(z) f(z) 在点 z 0 z_0 z0的洛朗级数的主要部分有无限多项,则称点 z 0 z_0 z0 f ( z ) f(z) f(z)本性奇点(essential singularity)
    依定义, z = 0 z=0 z=0 sin ⁡ z z \frac{\sin z}{z} zsinz的可去奇点, z = 0 z=0 z=0 sin ⁡ z z 2 \frac{\sin z}{z^2} z2sinz的一阶极点, z = 0 z=0 z=0 e 1 z e^\frac{1}{z} ez1的本性奇点。

  • 孤立奇点类型判定
    可去奇点判定:设点 z 0 z_0 z0为函数 f ( z ) f(z) f(z)的孤立奇点,则下列三个条件是等价的:
    (1) 点 z 0 z_0 z0 f ( z ) f(z) f(z)的可去奇点;
    (2) lim ⁡ z → z 0 f ( z ) = C 0 \lim\limits_{z\to z_0}f(z)=C_0 zz0limf(z)=C0,其中 C 0 C_0 C0为一复常数;
    (3) 函数 f ( z ) f(z) f(z)在点 z 0 z_0 z0的某个去心邻域内有界。
    m 阶极点判定 z 0 z_0 z0为函数 f ( z ) f(z) f(z)的m阶极点的充要条件是 f ( z ) = 1 ( z − z 0 ) m φ ( z ) f(z)=\frac{1}{(z-z_0)^m}φ(z) f(z)=(zz0)m1φ(z),其中 φ ( z ) φ(z) φ(z) z 0 z_0 z0解析且 φ ( z 0 ) ≠ 0 φ(z_0)\neq 0 φ(z0)=0
    极点判定 z 0 z_0 z0为函数 f ( z ) f(z) f(z)的极点的充要条件是 lim ⁡ z → z 0 f ( z ) = ∞ \lim\limits_{z\to z_0}f(z)=∞ zz0limf(z)=
    本性奇点判定 z 0 z_0 z0为函数 f ( z ) f(z) f(z)的本性奇点的充要条件是 lim ⁡ z → z 0 f ( z ) \lim\limits_{z\to z_0}f(z) zz0limf(z)不存在,也不趋于∞
    本性奇点判定 2:若点 z 0 z_0 z0 f ( z ) f(z) f(z)的本性奇点,且 lim ⁡ z → z 0 f ( z ) ≠ 0 \lim\limits_{z\to z_0}f(z)\neq 0 zz0limf(z)=0,则点 z 0 z_0 z0必为 1 f ( z ) \frac{1}{f(z)} f(z)1的本性奇点。

  • 函数的零点1与极点的关系
    定理 1:若 z 0 z_0 z0 f ( z ) f(z) f(z)的m级极点,则 z 0 z_0 z0 1 f ( z ) \frac{1}{f(z)} f(z)1的m级零点,反之亦然。
    定理 2:设 z 0 z_0 z0分别是函数 φ ( z ) , ψ ( z ) φ(z),ψ(z) φ(z),ψ(z)的m级零点和n级零点, f ( z ) = φ ( z ) ψ ( z ) f(z)=\frac{φ(z)}{ψ(z)} f(z)=ψ(z)φ(z),则有
    (1) 当 m > n m>n m>n 时, z 0 z_0 z0 f ( z ) f(z) f(z) m − n m-n mn级零点;
    (2) 当 m < n m<n m<n 时, z 0 z_0 z0 f ( z ) f(z) f(z) n − m n-m nm级零点;
    (3) 当 m = n m=n m=n 时, z 0 z_0 z0 f ( z ) f(z) f(z)可去奇点。

  • 函数在无穷远点的性质
    在扩充复平面上讨论函数的奇点,若无特殊声明,则约定无穷远点 ∞为任意函数的奇点。
    定义 1:设函数 f ( z ) f(z) f(z)在无穷远点的邻域 r < ∣ z ∣ < + ∞ r<|z|<+∞ r<z<+内解析,则无穷远点∞就称为函数 f ( z ) f(z) f(z)孤立奇点
    函数在无穷远点的洛朗级数
    ξ = 0 ξ=0 ξ=0 h ( ξ ) h(ξ) h(ξ)的孤立奇点,则有
    h ( ξ ) = ∑ n = − ∞ + ∞ b n ξ n = ∑ n = 0 ∞ b n ξ n + ∑ n = 1 ∞ b − n ξ − n ( 0 < ∣ ξ ∣ < 1 r ) h(ξ)=\displaystyle\sum_{n=-∞}^{+∞}b_nξ^n=\sum_{n=0}^{∞}b_nξ^n+\sum_{n=1}^{∞}b_{-n}ξ^{-n}\quad (0<|ξ|<\frac{1}{r}) h(ξ)=n=+bnξn=n=0bnξn+n=1bnξn(0<ξ<r1)
    若令 ξ = 1 z ξ=\frac{1}{z} ξ=z1,则有
    f ( z ) = h ( 1 z ) = ∑ n = 0 ∞ b n z − n + ∑ n = 1 ∞ b − n z n ( r < ∣ z ∣ < + ∞ ) f(z)=h(\frac{1}{z})=\displaystyle\sum_{n=0}^{∞}b_nz^{-n}+\sum_{n=1}^{∞}b_{-n}z^n\quad (r<|z|<+∞) f(z)=h(z1)=n=0bnzn+n=1bnzn(r<z<+)
    若再令 a n = b − n ( n ∈ Z ) a_n=b_{-n}(n\in\Z) an=bn(nZ),则有
    f ( z ) = ∑ n = 0 ∞ a − n z − n + ∑ n = 1 ∞ a n z n ( r < ∣ z ∣ < + ∞ ) f(z)=\displaystyle\sum_{n=0}^{∞}a_{-n}z^{-n}+\sum_{n=1}^{∞}a_nz^n\quad (r<|z|<+∞) f(z)=n=0anzn+n=1anzn(r<z<+)
    称此级数为 f ( z ) f(z) f(z)在点 z = ∞ z=∞ z=的洛朗级数,称其中的级数 ∑ n = 1 ∞ a n z n \displaystyle\sum_{n=1}^{∞}a_nz^n n=1anzn为主要部分,级数 ∑ n = 0 ∞ a − n z − n \displaystyle\sum_{n=0}^{∞}a_{-n}z^{-n} n=0anzn为解析部分。
    注意:与函数 f ( z ) f(z) f(z)在有限远点的情况相反,函数 f ( z ) f(z) f(z)在无穷远点的罗朗级数的解析部分是由非正幂项组成,而主要部分是由正幂项组成。
    定义 2:设 h ( ξ ) = f ( 1 ξ ) h(ξ)=f(\frac{1}{ξ}) h(ξ)=f(ξ1),如果 ξ = 0 ξ=0 ξ=0 h ( ξ ) h(ξ) h(ξ)的可去奇点、m级极点或本性奇点,则称 z = ∞ z=∞ z= f ( z ) f(z) f(z)的可去奇点、m级极点或本性奇点。
    无穷远点孤立奇点的分类:设点 z = ∞ z =∞ z=为函数 f ( z ) f(z) f(z)的孤立奇点,若函数在 z = ∞ z =∞ z=处的洛朗级数
    (1) 不含正幂项,则无穷远点 z = ∞ z =∞ z= f ( z ) f(z) f(z)的可去奇点;
    (2) 含有有限个正幂项,且 z m z^m zm为最高正幂,则无穷远点 z = ∞ z =∞ z= f ( z ) f(z) f(z)的m阶奇点;
    (3) 含有无穷多正幂项,无穷远点 z = ∞ z =∞ z= f ( z ) f(z) f(z)的本性奇点。

留数(Residue)

留数的概念与计算

  • 引述:当函数 f ( z ) f(z) f(z)在邻域 ∣ z − z 0 ∣ < δ |z-z_0|<δ zz0<δ内解析时,由柯西-古萨特定理知 ∮ C f ( z ) d z = 0 \displaystyle\oint_{C}f(z)dz=0 Cf(z)dz=0,其中C是该邻域内围绕 z 0 z_0 z0的任何一条正向简单闭曲线。
    但是,如果 z 0 z_0 z0是一个孤立奇点,则积分一般不等于零。设 f ( z ) f(z) f(z) z 0 z_0 z0去心领域 0 < ∣ z − z 0 ∣ < δ 0<|z-z_0|<δ 0<zz0<δ内的洛朗展开式为 f ( z ) = ∑ n = − ∞ + ∞ a n ( z − z 0 ) n f(z)=\displaystyle\sum_{n=-∞}^{+∞}a_n(z-z_0)^n f(z)=n=+an(zz0)n,对此项逐项积分,利用前一章实例的结果 ∮ C ( z − z 0 ) n d z = { 2 π i , n = − 1 0 , n ≠ − 1 , n ∈ Z \displaystyle\oint_{C}(z-z_0)^ndz=\begin{cases}2π i,&n=-1 \\0, &n\neq -1,n\in\Z\end{cases} C(zz0)ndz={2πi,0,n=1n=1,nZ,可以得到 ∮ C f ( z ) d z = 2 π i a − 1 \displaystyle\oint_{C}f(z)dz=2π i a_{-1} Cf(z)dz=2πia1
    这表明, f ( z ) f(z) f(z)的洛朗展开式沿围绕孤立奇点的正向简单闭曲线积分后,只留下 ( z − z 0 ) (z-z_0) (zz0)的负一次幂,,接下来我们就来研究此系数 a − 1 a_{-1} a1

  • 留数(Residue)
    留数定义:设 z 0 z_0 z0 f ( z ) f(z) f(z)的孤立奇点,即 f ( z ) f(z) f(z)在去心邻域 0 < ∣ z − z 0 ∣ < δ 0<|z-z_0|<δ 0<zz0<δ内解析,则 f ( z ) f(z) f(z) z 0 z_0 z0的洛朗展开式的负一次幂的系数 a − 1 a_{-1} a1,称为留数,记作 Res ( f , z 0 ) \text{Res}(f,z_0) Res(f,z0),即 Res ( f , z 0 ) = 1 2 π i ∮ C f ( z ) d z \text{Res}(f,z_0)=\displaystyle\dfrac{1}{2π i}\oint_{C}f(z)dz Res(f,z0)=2πi1Cf(z)dz其中C是该去心邻域内围绕 z 0 z_0 z0的任何一条正向简单闭曲线。
    留数定理:设函数 f ( z ) f(z) f(z)在区域D内除有限个孤立奇点 z 1 , z 2 , ⋯   , z n z_1,z_2,\cdots,z_n z1,z2,,zn外处处解析,C是D内包围所有奇点的一条正向简单闭曲线,则 ∮ C f ( z ) d z = 2 π i ∑ k = 1 n Res ( f , z k ) \displaystyle\oint_{C}f(z)dz=2π i \sum_{k=1}^{n}\text{Res}(f,z_k) Cf(z)dz=2πik=1nRes(f,zk)
    留数定理
    证明:如图,由复合闭路定理有 ∮ C f ( z ) d z = ∑ k = 1 n ∮ Γ k f ( z ) d z = 2 π i ∑ k = 1 n Res ( f , z k ) \displaystyle\oint_{C}f(z)dz=\sum_{k=1}^{n}\oint_{Γ_k}f(z)dz=2π i \sum_{k=1}^{n}\text{Res}(f,z_k) Cf(z)dz=k=1nΓkf(z)dz=2πik=1nRes(f,zk)

  • 无穷远点的留数
    无穷远点的留数 Res ( f , ∞ ) = 1 2 π i ∮ C − f ( z ) d z = − a − 1 \text{Res}(f,∞)=\displaystyle\dfrac{1}{2π i}\oint_{C^-}f(z)dz=-a_{-1} Res(f,)=2πi1Cf(z)dz=a1
    其中C是围绕原点 z = 0 z=0 z=0的任何一条正向简单闭曲线。
    无穷远点留数定理 ∑ k = 1 n Res ( f , z k ) + Res ( f , ∞ ) = 0 \displaystyle\sum_{k=1}^{n}\text{Res}(f,z_k)+\text{Res}(f,∞)=0 k=1nRes(f,zk)+Res(f,)=0
    其中C是围绕原点且包围所有孤立奇点 z 1 , z 2 , ⋯   , z n z_1,z_2,\cdots,z_n z1,z2,,zn的一条正向简单闭曲线。

留数的计算

  1. 如果 z 0 z_0 z0 f ( z ) f(z) f(z)的可去奇点 Res ( f , z 0 ) = 0 \text{Res}(f,z_0)=0 Res(f,z0)=0
  2. 如果 z 0 z_0 z0 f ( z ) f(z) f(z)的本性奇点,只能用洛朗展开式法求 a − 1 a_{-1} a1
  3. 如果 z 0 z_0 z0 f ( z ) f(z) f(z)的极点
    Res ( f , z 0 ) = { lim ⁡ z → z 0 ( z − z 0 ) f ( z ) if 1-order pole 1 ( m − 1 ) ! lim ⁡ z → z 0 d m − 1 d z m − 1 [ ( z − z 0 ) m f ( z ) ] if m-order pole \text{Res}(f,z_0)=\begin{cases} \lim\limits_{z\to z_0}(z-z_0)f(z) &\text{if 1-order pole} \\ \displaystyle\dfrac{1}{(m-1)!}\lim_{z\to z_0}\dfrac {\text{d}^{m-1}}{\text{d}z^{m-1}}[(z-z_0)^mf(z)] &\text{if m-order pole} \end{cases} Res(f,z0)=zz0lim(zz0)f(z)(m1)!1zz0limdzm1dm1[(zz0)mf(z)]if 1-order poleif m-order pole
  4. 如果 f ( z ) = P ( z ) Q ( z ) f(z)=\frac{P(z)}{Q(z)} f(z)=Q(z)P(z) P ( z ) , Q ( z ) P(z),Q(z) P(z),Q(z)均在 z 0 z_0 z0解析,且 P ( z 0 ) ≠ 0 , Q ( z 0 ) ≠ 0 , Q ′ ( z 0 ) ≠ 0 P(z_0)\neq 0,Q(z_0)\neq 0,Q'(z_0)\neq 0 P(z0)=0,Q(z0)=0,Q(z0)=0,则 z 0 z_0 z0 f ( z ) f(z) f(z)的一阶极点 Res ( f , z 0 ) = P ( z 0 ) Q ′ ( z 0 ) \text{Res}(f,z_0)=\frac{P(z_0)}{Q'(z_0)} Res(f,z0)=Q(z0)P(z0)
  5. 无穷远点的留数 Res ( f , ∞ ) = − Res [ f ( 1 z ) ⋅ 1 z 2 , 0 ] \text{Res}(f,∞)=-\text{Res}[f(\frac{1}{z})\cdot\frac{1}{z^2},0] Res(f,)=Res[f(z1)z21,0]

实例

  1. 计算积分 ∮ C z e z z 2 − 1 d z \displaystyle\oint_{C}\dfrac{ze^z}{z^2-1}dz Cz21zezdz,C为正向圆周 ∣ z ∣ = 2 |z|=2 z=2
    被积函数有两个一阶极点 ± 1 \pm1 ±1,而这两个极点都在圆周C内,所以
    ∮ C z e z z 2 − 1 d z = 2 π i [ Res ( f , 1 ) + Res ( f , − 1 ) ] = 2 π i ( e 2 + e − 1 2 ) = π i ( e + e − 1 ) \displaystyle\oint_{C}\dfrac{ze^z}{z^2-1}dz=2π i[\text{Res}(f,1)+\text{Res}(f,-1)]=2π i(\dfrac{e}{2}+\dfrac{e^{-1}}{2})=π i(e+e^{-1}) Cz21zezdz=2πi[Res(f,1)+Res(f,1)]=2πi(2e+2e1)=πi(e+e1)
  2. 计算积分 ∮ C e z z ( z − 1 ) 2 d z \displaystyle\oint_{C}\dfrac{e^z}{z(z-1)^2}dz Cz(z1)2ezdz,C为正向圆周 ∣ z ∣ = 2 |z|=2 z=2
    被积函数有一个一阶极点 z = 0 z=0 z=0和一个二阶极点 z = 1 z=1 z=1,所以
    ∮ C e z z ( z − 1 ) 2 d z = 2 π i [ Res ( f , 0 ) + Res ( f , 1 ) ] = 2 π i \displaystyle\oint_{C}\dfrac{e^z}{z(z-1)^2}dz=2π i[\text{Res}(f,0)+\text{Res}(f,1)]=2π i Cz(z1)2ezdz=2πi[Res(f,0)+Res(f,1)]=2πi
  3. f ( z ) = z − 1 f(z)=z^{-1} f(z)=z1在 ∞ 点的留数
    Res ( z − 1 , ∞ ) = − Res [ f ( 1 ξ ) ⋅ 1 ξ 2 , 0 ] = − Res ( 1 ξ , 0 ) = − 1 \text{Res}(z^{-1},∞)=-\text{Res}[f(\frac{1}{ξ})\cdot\frac{1}{ξ^2},0]=-\text{Res}(\frac{1}{ξ},0)=-1 Res(z1,)=Res[f(ξ1)ξ21,0]=Res(ξ1,0)=1

留数在定积分计算中的应用

引理 1:设函数 f ( z ) f(z) f(z)在闭区域 D = { z ∣ α ⩽ arg ⁡ z ⩽ β ( 0 ⩽ α ⩽ β ⩽ π ) } D=\{z|α⩽\arg z⩽β(0⩽α⩽β⩽π)\} D={zαargzβ(0αβπ)}上连续, C R C_R CR为圆周 C : ∣ z ∣ = R C : |z| = R C:z=R 在D内的一段弧,若对 C R C_R CR上的任意的点 z 均有 lim ⁡ z → ∞ z f ( z ) = k \lim\limits_{z\to ∞}zf(z)=k zlimzf(z)=k,则 lim ⁡ R → ∞ ∫ C R f ( z ) d z = k ( β − α ) i \displaystyle\lim\limits_{R\to∞}\int_{C_R}f(z)dz=k(β−α)i RlimCRf(z)dz=k(βα)i
引理1

引理 2:设函数 f ( z ) f(z) f(z)在闭区域 D = { z ∣ α ⩽ arg ⁡ ( z − z 0 ) ⩽ β ( 0 ⩽ α ⩽ β ⩽ π ) , ∣ z ∣ ⩽ r 0 } D=\{z|α⩽\arg (z-z_0)⩽β(0⩽α⩽β⩽π),|z|⩽r_0\} D={zαarg(zz0)β(0αβπ),zr0}上连续, C r C_r Cr为圆周 C : ∣ z − z 0 ∣ = r ( r < r 0 ) C : |z-z_0| = r(r<r_0) C:zz0=r(r<r0) 在D内的一段弧,若对 C r C_r Cr的任意的点 z 均有 lim ⁡ z → z 0 ( z − z 0 ) f ( z ) = k \lim\limits_{z\to z_0}(z-z_0)f(z)=k zz0lim(zz0)f(z)=k,则 lim ⁡ r → 0 ∫ C r f ( z ) d z = k ( β − α ) i \displaystyle\lim\limits_{r\to0}\int_{C_r}f(z)dz=k(β−α)i r0limCrf(z)dz=k(βα)i
引理2

若尔当(Jordan)引理:设函数 f ( z ) f(z) f(z)在闭区域 D = { z ∣ α ⩽ arg ⁡ z ⩽ β ( 0 ⩽ α ⩽ β ⩽ π ) , 0 < R 0 ⩽ ∣ z ∣ < + ∞ } D=\{z|α⩽\arg z⩽β(0⩽α⩽β⩽π),0<R_0⩽|z|<+ ∞\} D={zαargzβ(0αβπ),0<R0z<+}上连续, C R C_R CR为圆周 C : ∣ z ∣ = R ( R > R 0 ) C : |z| = R(R>R_0) C:z=R(R>R0) 在D内的一段弧,若对 C R C_R CR上的任意的点 z 均有 lim ⁡ z → ∞ f ( z ) = 0 \lim\limits_{z\to ∞}f(z)=0 zlimf(z)=0,则对于任意 a > 0 a>0 a>0 lim ⁡ R → ∞ ∫ C R f ( z ) e i a z d z = 0 \displaystyle\lim\limits_{R\to∞}\int_{C_R}f(z)e^{iaz}dz=0 RlimCRf(z)eiazdz=0

积分计算

  1. 形如 ∫ 0 2 π R ( cos ⁡ θ , sin ⁡ θ ) d θ \displaystyle\int_{0}^{2π}R(\cosθ,\sinθ)dθ 02πR(cosθ,sinθ)dθ 的积分
    这里讨论的被积函数 R ( cos ⁡ θ , sin ⁡ θ ) R(\cosθ,\sinθ) R(cosθ,sinθ)是有理函数
    z = e i θ z=e^{iθ} z=eiθ,则 d z = i e i θ d θ = i z d θ dz=ie^{iθ}dθ=izdθ dz=ieiθdθ=izdθ
    sin ⁡ θ = z 2 − 1 2 i z , cos ⁡ θ = z 2 + 1 2 z \sinθ=\dfrac{z^2-1}{2iz},\quad \cosθ=\dfrac{z^2+1}{2z} sinθ=2izz21,cosθ=2zz2+1
    所以 ∫ 0 2 π R ( cos ⁡ θ , sin ⁡ θ ) d θ = ∫ ∣ z ∣ = 1 R ( z 2 + 1 2 z , z 2 − 1 2 i z ) 1 i z d z \displaystyle\int_{0}^{2π}R(\cosθ,\sinθ)dθ=\int_{|z|=1}R(\dfrac{z^2+1}{2z},\dfrac{z^2-1}{2iz})\dfrac{1}{iz}dz 02πR(cosθ,sinθ)dθ=z=1R(2zz2+1,2izz21)iz1dz
    f ( z ) = R ( z 2 + 1 2 z , z 2 − 1 2 i z ) 1 i z f(z)=R(\dfrac{z^2+1}{2z},\dfrac{z^2-1}{2iz})\dfrac{1}{iz} f(z)=R(2zz2+1,2izz21)iz1,则
    ∫ 0 2 π R ( cos ⁡ θ , sin ⁡ θ ) d θ = ∮ ∣ z ∣ = 1 f ( z ) d z = 2 π i ∑ k = 1 n Res ( f , z k ) \displaystyle\int_{0}^{2π}R(\cosθ,\sinθ)dθ=\oint_{|z|=1}f(z)dz=2π i \sum_{k=1}^{n}\text{Res}(f,z_k) 02πR(cosθ,sinθ)dθ=z=1f(z)dz=2πik=1nRes(f,zk)
    其中 z 0 , z 1 , ⋯   , z n z_0,z_1,\cdots,z_n z0,z1,,zn为在圆周 ∣ z ∣ = 1 |z|=1 z=1内的孤立奇点。

  2. 形如 ∫ − ∞ + ∞ R ( x ) d x \displaystyle\int_{-∞}^{+∞}R(x)dx +R(x)dx 的积分
    被积函数 R ( x ) R(x) R(x)为有理函数,其分母的次数至少比分子的次数高二次,且在实轴上连续,设 R ( z ) = z n + a 1 z n − 1 + ⋯ + a n z m + b 1 z m − 1 + ⋯ + b m , m − n ⩾ 2 R(z)=\dfrac{z^n+a_1z^{n-1}+\cdots+a_n}{z^m+b_1z^{m-1}+\cdots+b_m},\quad m-n⩾2 R(z)=zm+b1zm1++bmzn+a1zn1++an,mn2 为一不可约分式。
    积分
    由留数定理有 ∫ − r r R ( z ) d z + ∫ C r R ( z ) d z = 2 π i ∑ k = 1 n Res [ R ( z ) , z k ] \displaystyle\int_{-r}^{r}R(z)dz+\int_{C_r}R(z)dz=2π i \sum_{k=1}^{n}\text{Res}[R(z),z_k] rrR(z)dz+CrR(z)dz=2πik=1nRes[R(z),zk]
    其中 z 0 , z 1 , ⋯   , z n z_0,z_1,\cdots,z_n z0,z1,,zn Im  z > 0 \text{Im }z>0 Im z>0 内所有的极点
    r → ∞ r\to ∞ r,对上式两端取极限
    ∫ − ∞ + ∞ R ( z ) d z + lim ⁡ r → ∞ ∫ C r R ( z ) d z = 2 π i ∑ k = 1 n Res [ R ( z ) , z k ] \displaystyle\int_{-∞}^{+∞}R(z)dz+\lim\limits_{r\to∞}\int_{C_r}R(z)dz=2π i \sum_{k=1}^{n}\text{Res}[R(z),z_k] +R(z)dz+rlimCrR(z)dz=2πik=1nRes[R(z),zk]
    由于 R ( z ) R(z) R(z)分母的次数至少比分子的次数高二次,所以 lim ⁡ z → ∞ z R ( z ) = 0 \lim\limits_{z\to ∞}zR(z)=0 zlimzR(z)=0
    由引理 1 知 lim ⁡ r → ∞ ∫ C r R ( z ) d z = 0 \displaystyle\lim\limits_{r\to∞}\int_{C_r}R(z)dz=0 rlimCrR(z)dz=0
    所以 ∫ − ∞ + ∞ R ( z ) d z = 2 π i ∑ k = 1 n Res [ R ( z ) , z k ] \displaystyle\int_{-∞}^{+∞}R(z)dz=2π i \sum_{k=1}^{n}\text{Res}[R(z),z_k] +R(z)dz=2πik=1nRes[R(z),zk]

  3. 形如 ∫ − ∞ + ∞ R ( x ) e i a x d x ( a > 0 ) \displaystyle\int_{-∞}^{+∞}R(x)e^{iax}dx(a>0) +R(x)eiaxdx(a>0) 的积分
    用上例的方法,根据若尔当引理可得
    ∫ − ∞ + ∞ R ( z ) e i a x d z = 2 π i ∑ k = 1 n Res [ R ( z ) e i a x , z k ] \displaystyle\int_{-∞}^{+∞}R(z)e^{iax}dz=2π i \sum_{k=1}^{n}\text{Res}[R(z)e^{iax},z_k] +R(z)eiaxdz=2πik=1nRes[R(z)eiax,zk]

  • 实例
    (1) 积分 ∫ 0 + ∞ sin ⁡ x x d x = π 2 \displaystyle\int_{0}^{+∞}\dfrac{\sin x}{x}dx=\dfrac{π}{2} 0+xsinxdx=2π
    (2) 积分 ∫ 0 + ∞ d x ( 1 + x ) x a = π sin ⁡ π a ( 0 < a < 1 ) \displaystyle\int_{0}^{+∞}\dfrac{dx}{(1+x)x^a}=\dfrac{π}{\sin πa}\quad(0<a<1) 0+(1+x)xadx=sinπaπ(0<a<1)

对数留数与辐角原理

定理 1:设闭曲线C是区域D的边界线,函数 f ( z ) f(z) f(z)在D内除极点外每一点都解析,并且在C上解析,则 1 2 π i ∮ C f ′ ( z ) f ( z ) d z = P − N \displaystyle\dfrac{1}{2π i }\oint_{C}\dfrac{f'(z)}{f(z)}dz=P-N 2πi1Cf(z)f(z)dz=PN这里P和N分别表示在D内零点1及极点的总数, 而且每个k阶零点或极点分别算作k个零点或极点。
上式左端称为函数 f ( z ) f(z) f(z)关于围线C的对数留数(Logarithmic Residue),实际上 f ′ ( z ) f ( z ) = d d z [ Ln  f ( z ) ] \dfrac{f'(z)}{f(z)}=\dfrac{\text{d}}{\text{d}z}[\text{Ln }f(z)] f(z)f(z)=dzd[Ln f(z)]。它提供了一种计算复变函数沿围线积分的方法。

辐角原理(Argument Principle):设有闭曲线C及函数 f ( z ) f(z) f(z),满足定理 1 的条件,则 P − N = 1 2 π Δ C arg ⁡ f ( z ) \displaystyle P-N=\dfrac{1}{2π}Δ_{C}\arg f(z) PN=2π1ΔCargf(z) 这里 Δ C arg ⁡ f ( z ) Δ_{C}\arg f(z) ΔCargf(z)表示z沿C的正向绕行一周时,函数 f ( z ) f(z) f(z) 的辐角改变量。

儒歇定理 (Rouché’s theorem):设C是一围线,若函数 f ( z ) f(z) f(z) ϕ ( z ) ϕ(z) ϕ(z)均在C的内部及C上解析,且满足 ∣ ϕ ( z ) ∣ < ∣ f ( z ) ∣ ,   z ∈ C |ϕ(z)| < |f(z)| , z∈C ϕ(z)<f(z), zC, 则 f ( z ) + ϕ ( z ) f(z) +ϕ(z) f(z)+ϕ(z) f ( z ) f(z) f(z) 在C的内部的零点个数相同(一个k级零点算作k个零点)。

代数基本定理:任何复系数一元n次多项式方程 f ( z ) = a 0 z n + a 1 z n − 1 + ⋯ + a n ( a 0 ≠ 0 ) f(z)=a_0z^n+a_1z^{n-1}+\cdots+a_n(a_0\neq 0) f(z)=a0zn+a1zn1++an(a0=0) 有且只有 n 个零点(n 级零点就算作 n 个零点)。

共形映射(Conformal Mapping)

解析函数的映射性质

导数的几何意义

  1. 设C 是一条有向光滑曲线,其方程为 z = z ( t ) , a ⩽ t ⩽ b z=z(t),a⩽t⩽b z=z(t),atb,它的正向为随t增大时z的移动方向,设 z 0 = z ( t 0 ) , z = z ( t 0 + Δ t ) = z ( t ) z_0=z(t_0),z=z(t_0+Δt)=z(t) z0=z(t0),z=z(t0+Δt)=z(t) 为曲线C上的点,则割线 z z 0 ‾ \overline{zz_0} zz0的正向与复数 z ( t 0 + Δ t ) − z ( t 0 ) Δ t \frac{z(t_0+Δt)-z(t_0)}{Δt} Δtz(t0+Δt)z(t0) 表示的向量的方向一致,因此 z ′ ( t 0 ) = lim ⁡ Δ t → 0 z ( t 0 + Δ t ) − z ( t 0 ) Δ t z'(t_0)=\lim\limits_{Δt\to 0}\frac{z(t_0+Δt)-z(t_0)}{Δt} z(t0)=Δt0limΔtz(t0+Δt)z(t0) 所表示的向量就是曲线C 处的切线向量,且与C的方向一致。
    因此在处的切线与实轴的夹角可复数表示为 α = Arg  z ′ ( t 0 ) α=\text{Arg }z'(t_0) α=Arg z(t0)
    割线
  2. w = f ( z ) w=f(z) w=f(z)将曲线C映射成曲线 Γ : w = w ( t ) = f [ z ( t ) ] Γ:w=w(t)=f[z(t)] Γ:w=w(t)=f[z(t)], 则曲线 Γ Γ Γ w 0 = f [ z ( t 0 ) ] w_0=f[z(t_0)] w0=f[z(t0)]处的切线与实轴的夹角为 β = Arg  w ′ ( t 0 ) = Arg  f ′ ( z 0 ) z ′ ( t 0 ) = Arg  f ′ ( z 0 ) + Arg  z ′ ( t 0 ) β=\text{Arg }w'(t_0)=\text{Arg }f'(z_0)z'(t_0)=\text{Arg }f'(z_0)+\text{Arg }z'(t_0) β=Arg w(t0)=Arg f(z0)z(t0)=Arg f(z0)+Arg z(t0)
    通过映射 w = f ( z ) w=f(z) w=f(z),曲线C在 z 0 z_0 z0处的切线逆时针方向旋转 Arg  f ′ ( z 0 ) \text{Arg }f'(z_0) Arg f(z0)得到曲线 Γ Γ Γ z 0 z_0 z0处的切线。
    由此,称 Arg  f ′ ( z 0 ) \text{Arg }f'(z_0) Arg f(z0)为映射 w = f ( z ) w=f(z) w=f(z)在点 z 0 z_0 z0 处的旋转角(angle of rotation)。易知,旋转角只依赖于点 z 0 z_0 z0,而与曲线C 的形状和方向无关。称旋转角的这种性质为旋转角不变性
    切线
  3. 由旋转角不变性立即可获得一个重要性质:对于连续函数 w = f ( z ) , z ∈ D w=f(z),z∈D w=f(z),zD, 若 f ′ ( z 0 ) ≠ 0 f'(z_0)\neq 0 f(z0)=0,则过点 z 0 z_0 z0 具有切线的任意两条有向连续曲线 C , C 1 C,C_1 C,C1 的夹角(二曲线在点 z 0 z_0 z0的切线所夹的角)与象曲线在点 w 0 = f ( z 0 ) w_0 = f(z_0) w0=f(z0) 的夹角保持大小相等且方向相同(即由原象曲线 C , C 1 C,C_1 C,C1 的旋转方向与由象曲线 Γ , Γ 1 Γ,Γ_1 Γ,Γ1 的旋转方向是一致的),该性质称为保角性(Conformal)。
    保角性
  4. 由导数定义,有 ∣ f ′ ( z 0 ) ∣ = lim ⁡ z → z 0 ∣ f ( z ) − f ( z 0 ) ∣ ∣ z − z 0 ∣ = r ( r ≠ 0 ) |f'(z_0)|=\lim\limits_{z\to z_0}\dfrac{|f(z)-f(z_0)|}{|z-z_0|}=r\quad (r\neq 0) f(z0)=zz0limzz0f(z)f(z0)=r(r=0)
    上式表明,像点之间的距离 ∣ f ( z ) − f ( t 0 ) ∣ |f(z)-f(t_0)| f(z)f(t0)与原像点之间的距离 ∣ z − z 0 ∣ |z-z_0| zz0比值的极限为 ∣ f ′ ( z 0 ) ∣ |f'(z_0)| f(z0),称这个极限为映射 w = f ( z ) w= f(z) w=f(z)在点 z 0 z_0 z0伸缩率(shrinkage)。显然,这伸缩率只依赖于点 z 0 z_0 z0 ,而与曲线C 的形状及方向无关,这种性质称为伸缩率不变性
  • 共形映射(conformal mapping)
    若函数 w = f ( z ) w = f(z) w=f(z) z 0 z_0 z0 的邻域内有定义,且在 z 0 z_0 z0具有保角性和伸缩率不变性,则称映射 w = f ( z ) w = f(z) w=f(z) z 0 z_0 z0 是共形的,或称 w = f ( z ) w = f(z) w=f(z) z 0 z_0 z0共形映射。若映射 w = f ( z ) w = f(z) w=f(z)在区域G 内每一点都是共形的,则称该映射为区域G 内的共形映射
    单叶函数 (univalent function):设函数 f ( z ) f(z) f(z)在区域D内解析,且对D内任意不同两点 z 1 z_1 z1 z 2 z_2 z2,均有 f ( z 1 ) ≠ f ( z 2 ) f(z_1)\neq f(z_2) f(z1)=f(z2) ,则称 f ( z ) f(z) f(z)为区域D内的单叶解析函数,简称单叶函数。
    由单叶函数的性质知,单叶函数在定义域内为共形映射。
    定理 1:设 f ( z ) f(z) f(z)在区域D内单叶解析,则 f ′ ( z ) ≠ 0 , z ∈ D f'(z)\neq 0,z\in D f(z)=0,zD
    保域性定理:设函数 f ( z ) f(z) f(z)在区域D内解析,并且不恒等于常数,则D的像 D ′ = f ( D ) D'=f(D) D=f(D)是一个区域,即 f ( z ) f(z) f(z)确定从区域D到区域 D ′ D' D的一个满射。
    定理 2:若函数 w = f ( z ) w = f(z) w=f(z) z 0 z_0 z0 解析,且 f ′ ( z 0 ) ≠ 0 f'(z_0) ≠ 0 f(z0)=0,则映射 w = f ( z ) w = f(z) w=f(z)是共形的,而且 Arg  f ′ ( z 0 ) \text{Arg }f'(z_0) Arg f(z0) 表示这个映射在 z 0 z_0 z0 的旋转角, ∣ f ′ ( z 0 ) ∣ |f'(z_0)| f(z0) 表示这个映射在 z 0 z_0 z0 的伸缩率。如果解析函数 w = f ( z ) w = f(z) w=f(z)在G 内处处有 f ′ ( z ) ≠ 0 f'(z) ≠ 0 f(z)=0,则映射 w = f ( z ) w = f(z) w=f(z)是G 内的共形映射。
    定理 3:若函数 w = f ( z ) w = f(z) w=f(z)为区域G 内单叶函数,则反函数 z = φ ( w ) z = φ(w) z=φ(w) G 1 = f ( G ) G_1=f(G) G1=f(G) 内单叶函数,并有 φ ′ ( w 0 ) = 1 f ′ ( z 0 ) , z 0 ∈ G , w 0 = f ( z 0 ) ∈ G 1 φ'(w_0)=\dfrac{1}{f'(z_0)},z_0\in G,w_0=f(z_0)\in G_1 φ(w0)=f(z0)1,z0G,w0=f(z0)G1

分式线性映射

  • 分式线性映射:设 a , b , c , d a,b,c,d a,b,c,d为满足 a d − b c ≠ 0 ad-bc\neq 0 adbc=0的复常数,称由分式线性函数 w = a z + b c z + d w=\dfrac{az+b}{cz+d} w=cz+daz+b构成的映射为分式线性映射(Fractional Linear Mapping)。特别的,当 c = 0 c=0 c=0时,称为线性映射
    (1) 其中条件限制 a d − b c ≠ 0 ad-bc\neq 0 adbc=0是为了映射的保角性,否则将有 d w d z = a d − b c ( c z + d ) 2 = 0 \dfrac{dw}{dz}=\dfrac{ad-bc}{(cz+d)^2}=0 dzdw=(cz+d)2adbc=0,此时 w ≡ w≡ w 常数,将会把整个 z平面映射 w平面一个点。
    (2) 逆映射 z = − d w + b c w − a z=\dfrac{-dw+b}{cw-a} z=cwadw+b满足 ( − a ) ( − d ) − b c ≠ 0 (-a)(-d)-bc\neq 0 (a)(d)bc=0,仍为分式线性映射。
    (3) 三个基本映射:一个一般的分式线性映射可以分解为几个简单的映射的复合。
    c = 0 c=0 c=0 时,有 w = a z + b d = a d ( z + b a ) w=\cfrac{az+b}{d}=\cfrac{a}{d}(z+\cfrac{b}{a}) w=daz+b=da(z+ab)
    c ≠ 0 c\neq0 c=0 时,有 w = a z + b c z + d = ( b − a d c ) 1 c z + d + a c w=\cfrac{az+b}{cz+d}=(b-\cfrac{ad}{c})\cfrac{1}{cz+d}+\cfrac{a}{c} w=cz+daz+b=(bcad)cz+d1+ca
    由此可见,分式线性映射可由 w = z + b , w = α z , w = 1 z w=z+b,w=αz,w=\frac{1}{z} w=z+b,w=αz,w=z1 复合而成。

  • 平移映射(translation): w = z + b w=z+b w=z+b
    平移映射

  • 旋转和相似映射(rotation and similar): w = α z w=αz w=αz
    α = r e i θ 0 , z = ∣ z ∣ e i θ α=re^{iθ_0},z=|z|e^{iθ} α=reiθ0,z=zeiθ,则 w = r ∣ z ∣ e i ( θ 0 + θ ) w=r|z|e^{i(θ_0+θ)} w=rzei(θ0+θ)
    从而 Arg  w = Arg  z + θ , ∣ w ∣ = r ∣ z ∣ \text{Arg }w=\text{Arg }z+θ,|w|=r|z| Arg w=Arg z+θ,w=rz,即 z点先旋转角度 θ 0 θ_0 θ0 ∣ z ∣ |z| z再伸缩 r r r 倍。
    旋转映射 相似映射

  • 反演映射(inverse): w = 1 z w=\dfrac{1}{z} w=z1
    z = r e i θ z=re^{iθ} z=reiθ,则 w = 1 r e i ( − θ ) w=\dfrac{1}{r}e^{i(-θ)} w=r1ei(θ)
    反演映射
    反演映射通常分解为两个映射完成:
    (1) ξ = 1 z ˉ = 1 r e i θ \xi=\dfrac{1}{\bar z}=\dfrac{1}{r}e^{iθ} ξ=zˉ1=r1eiθ ∣ ξ ∣ ∣ z ∣ = 1 |\xi||z|=1 ξz=1,即 z z z ξ \xi ξ关于单位圆周 ∣ z ∣ = 1 |z|=1 z=1对称2
    (2) w = ξ ˉ = 1 r e i ( − θ ) w=\bar \xi=\dfrac{1}{r}e^{i(-θ)} w=ξˉ=r1ei(θ) ξ \xi ξ w w w关于实轴对称。

  • 分式线性映射的性质
    为便于研究分式线性变换在扩充复平面的性质,约定:
    (1) 反演映射 w = 1 z w=\dfrac{1}{z} w=z1 z = 0 z=0 z=0映射成 w = ∞ w=∞ w= z = ∞ z=∞ z=映射成 w = 0 w=0 w=0
    (2) 函数 f ( z ) f(z) f(z) z = ∞ z=∞ z=及其邻域内的性质可由函数 f ( 1 ξ ) , ξ = 1 z f(\frac{1}{ξ}),ξ=\frac{1}{z} f(ξ1),ξ=z1 z = 0 z=0 z=0及其邻域内的性质确定。
    (3) 在扩充复平面上将直线视作一个过无穷远点的特殊圆周。
    共形性(conformity):分式线性映射在扩充复平面是单叶的,且是共形的。
    (1) 线性映射 w = a z + b ( a ≠ 0 ) w=az+b(a\neq 0) w=az+b(a=0)是单叶的,且 w ′ ( z ) = a ≠ 0 w'(z)=a\neq 0 w(z)=a=0,显然在扩充复平面是共形的
    (2) 反演映射 w = 1 z w=\dfrac{1}{z} w=z1是单叶的,且 w ′ ( z ) = − 1 z 2 w'(z)=-\dfrac{1}{z^2} w(z)=z21,根据约定计算,在扩充复平面是共形的
    分式线性映射由线性映射和反演映射复合而成,显然是单叶共形的。
    保圆性 (circular):分式线性映射将扩充复平面上的圆周映射为圆周。
    (1) 线性映射 w = a z + b ( a ≠ 0 ) w=az+b(a\neq 0) w=az+b(a=0) 将 z平移,旋转,伸缩,且有相同的旋转角 Arg  a \text{Arg }a Arg a和伸缩因子 ∣ a ∣ |a| a,故将映射成圆。
    (2) 反演映射 w = 1 z w=\dfrac{1}{z} w=z1,设 z = x + i y , w = u + i v z=x+iy,w=u+iv z=x+iy,w=u+iv,可得 x = u u 2 + v 2 , y = − v u 2 + v 2 x=\dfrac{u}{u^2+v^2},y=-\dfrac{v}{u^2+v^2} x=u2+v2u,y=u2+v2v
    对于z平面任意给定的圆 A ( x 2 + y 2 ) + B x + C y + D = 0 A(x^2+y^2)+Bx+Cy+D=0 A(x2+y2)+Bx+Cy+D=0,其像曲线满足方程 D ( u 2 + v 2 ) + B u − C v + A = 0 D(u^2+v^2)+Bu-Cv+A=0 D(u2+v2)+BuCv+A=0,故仍然为圆。
    保对称性(Symmetries):设点 z 1 , z 2 z_1,z_2 z1,z2是关于圆周C的对称点, 则在分式线性映射 w = f ( z ) w=f(z) w=f(z)下,他们的像点 w 1 = f ( z 1 ) , w 2 = f ( z 2 ) w_1=f(z_1),w_2=f(z_2) w1=f(z1),w2=f(z2)是关于C的像曲线 Γ = f ( C ) Γ=f(C) Γ=f(C) 对称。
    定理 1:在扩充复平面上的两点 z 1 , z 2 z_1,z_2 z1,z2 是关于圆周C 的对称点的充要条件是通过 z 1 , z 2 z_1,z_2 z1,z2 的任何圆周与圆周C 正交。
    对应点公式:若分式性性映射将扩充复平面( z 平面)上3个互异的点 z 1 , z 2 , z 3 z_1,z_2,z_3 z1,z2,z3 依次映射为扩充复平面(w平面)上的三点 w 1 , w 2 , w 3 w_1,w_2,w_3 w1,w2,w3,则此分式线性映射就唯一确定,且可写成 w − w 1 w − w 2 : w 3 − w 1 w 3 − w 2 = z − z 1 z − z 2 : z 3 − z 1 z 3 − z 2 \dfrac{w-w_1}{w-w_2}:\dfrac{w_3-w_1}{w_3-w_2}=\dfrac{z-z_1}{z-z_2}:\dfrac{z_3-z_1}{z_3-z_2} ww2ww1:w3w2w3w1=zz2zz1:z3z2z3z1
    z − z 1 z − z 2 : z 3 − z 1 z 3 − z 2 \dfrac{z-z_1}{z-z_2}:\dfrac{z_3-z_1}{z_3-z_2} zz2zz1:z3z2z3z1 z 1 , z 2 , z , z 3 z_1,z_2,z,z_3 z1,z2,z,z3交比(cross ratio),或称非调和比,记为 ( z 1 , z 2 , z , z 3 ) (z_1,z_2,z,z_3) (z1,z2,z,z3)
    由上式可知,分式线性函数保持交比不变。

部分初等函数的映射性质

  • 指数函数的映射 w = e z = e x e i y w=e^z=e^xe^{iy} w=ez=exeiy ,以 2 π i 2π i 2πi为周期,在一个周期内为单叶函数。
    指数函数将水平带状区域映射为角形区域。
    指数映射

  • 对数函数的映射 w = Ln  z = ln ⁡ z + 2 k π i w=\text{Ln }z=\ln z+2kπi w=Ln z=lnz+2kπi,主值分支 ln ⁡ z = ln ⁡ ∣ z ∣ + i arg ⁡ z \ln z=\ln|z|+i\arg z lnz=lnz+iargz
    对数函数为指数函数反函数,在单值分支内为单叶函数。
    取单值分支 f k ( z ) = ln ⁡ ∣ z ∣ + i arg ⁡ z + 2 k π i f_k(z)=\ln|z|+i\arg z+2kπi fk(z)=lnz+iargz+2kπi
    设 z平面内角形区域 z = r e i θ ( 0 < θ < θ 0 ⩽ 2 π ) z=re^{iθ} (0<θ<θ_0⩽2π) z=reiθ(0<θ<θ02π),则 f k ( z ) = ln ⁡ ∣ r ∣ + i ( θ + 2 k π ) f_k(z)=\ln|r|+i(θ+2kπ) fk(z)=lnr+i(θ+2kπ)
    即将 z平面角形区域映射成 w平面平行于实轴的带形区域.

  • 幂函数的映射 w = z n ( n ∈ Z + ) w=z^n(n\in \Z^+) w=zn(nZ+)
    z = r e i θ z=re^{iθ} z=reiθ,则 w = r n e i n θ w=r^{n}e^{inθ} w=rneinθ ,即 ∣ w ∣ = r n , arg ⁡ w = n θ |w|=r^n,\arg w=nθ w=rn,argw=nθ
    即 z平面角形区域 arg ⁡ z ∈ [ 0 , θ 0 ] \arg z\in[0,θ_0] argz[0,θ0] 映射为 w平面角形区域 arg ⁡ w ∈ [ 0 , n θ 0 ] \arg w \in [0,nθ_0] argw[0,nθ0]
    幂函数映射

共形映射的基本问题示例

共形映射的基本问题是:对任意给定的两个单连通区域G 与G′ ,是否存在一个单叶函数能将G 保形映射成G′ = f(G)?若存在,是否唯一。
黎曼(Riemann)定理:若G 为扩充复平面上的一个单连通区域,其边界点不止一点,则必存在单叶函数 w = f ( z ) w = f(z) w=f(z) 将G映射为单位圆D;若G内某一点满足条件 f ( z 0 ) = 0 f(z_0)=0 f(z0)=0 f ′ ( z 0 ) > 0 f'(z_0)>0 f(z0)>0,则映射 w = f ( z ) w = f(z) w=f(z) 是唯一的。

边界对应定理(boundary correspondence):设 C为单连通区域G的边界,若函数 w = f ( z ) w=f(z) w=f(z) 在闭区域 G ˉ = G ∪ C \bar G=G∪C Gˉ=GC上解析,且把 C C C双射成 C 1 C_1 C1,则函数 w = f ( z ) w=f(z) w=f(z) 在G内部单叶,且把G映射成 C 1 C_1 C1包围的区域 G 1 G_1 G1
边界对应定理,将区域问题变为考查察边界问题。

  1. 将上半平面(半径为无穷大的圆) Im  z > 0 \text{Im }z > 0 Im z>0 映射为单位圆盘 ∣ w ∣ < 1 |w| <1 w<1 的分式线性映射。
    解:设 z上平面一点 z = z 0 ( Im  z 0 > 0 ) z=z_0(\text{Im }z_0 > 0) z=z0(Im z0>0)映射到 w平面原点 w = 0 w=0 w=0,有保对称性知, z = z ˉ 0 z=\bar z_0 z=zˉ0将映射成 w = ∞ w=∞ w=,故可设线性映射 w = k z − z 0 z − z ˉ 0 , k ∈ R w=k\dfrac{z-z_0}{z-\bar z_0},k\in\R w=kzzˉ0zz0,kR
    只须利用该映射将实轴上的点 z = x 映射为单位圆周 ∣ w ∣ = 1 |w| =1 w=1上的点,即当z = x时,有 ∣ w ∣ = ∣ k x − z 0 x − z ˉ 0 ∣ = ∣ k ∣ ∣ x − z 0 x − z ˉ 0 ∣ = ∣ k ∣ = 1 |w|=|k\dfrac{x-z_0}{x-\bar z_0}|=|k||\dfrac{x-z_0}{x-\bar z_0}|=|k|=1 w=kxzˉ0xz0=kxzˉ0xz0=k=1,即 k = e i θ , θ ∈ R k=e^{iθ},θ\in\R k=eiθ,θR
    所求的映射为 w = e i θ z − z 0 z − z ˉ 0 ( θ ∈ R , Im  z 0 > 0 ) w=e^{iθ}\dfrac{z-z_0}{z-\bar z_0}\quad(θ\in\R,\text{Im }z_0 > 0) w=eiθzzˉ0zz0(θR,Im z0>0)
    线性映射1

  2. 求把圆盘 ∣ z ∣ < 1 |z|<1 z<1 映射成 ∣ w ∣ < 1 |w|<1 w<1 的分式线性映射。
    解:设 z上平面一点 z = z 0 ( ∣ z 0 ∣ < 1 ) z=z_0(|z_0| < 1) z=z0(z0<1)映射到 w平面原点 w = 0 w=0 w=0,有保对称性知, z = z 0 z=z_0 z=z0关于圆周 ∣ z ∣ = 1 |z|=1 z=1 的对称点 1 z ˉ 0 \frac{1}{\bar z_0} zˉ01 将映射成 w = ∞ w=∞ w=,故可设线性映射 w = k z − z 0 z − 1 z ˉ 0 = k ′ z − z 0 1 − z ˉ 0 z , k ′ = k z ˉ 0 w=k\cfrac{z-z_0}{z-\frac{1}{\bar z_0}}=k'\cfrac{z-z_0}{1-\bar z_0z},k'=k\bar z_0 w=kzzˉ01zz0=k1zˉ0zzz0,k=kzˉ0
    只须利用该映射将 ∣ z ∣ = 1 |z|=1 z=1 映射为 ∣ w ∣ = 1 |w| =1 w=1上的点,即当z = 1时,有 ∣ w ∣ = ∣ k ′ 1 − z 0 1 − z ˉ 0 ∣ = ∣ k ′ ∣ = 1 |w|=|k'\dfrac{1-z_0}{1-\bar z_0}|=|k'|=1 w=k1zˉ01z0=k=1,即 k ′ = e i θ , θ ∈ R k'=e^{iθ},θ\in\R k=eiθ,θR
    所求的映射为 w = e i θ z − z 0 1 − z ˉ 0 z ( θ ∈ R , ∣ z 0 ∣ < 1 ) w=e^{iθ}\dfrac{z-z_0}{1-\bar z_0z}\quad(θ\in\R,|z_0| < 1) w=eiθ1zˉ0zzz0(θR,z0<1)
    线性映射2

  3. 将角形区域 G : 0 < arg ⁡ z < π / 6 G:0<\arg z<π/6 G:0<argz<π/6映射为单位圆盘 ∣ w ∣ < 1 |w|<1 w<1的映射
    z 1 = z 6 z_1=z^6 z1=z6可将角形区域映射成半平面 G 1 : Im  z 1 > 0 G_1:\text{Im }z_1>0 G1:Im z1>0
    又根据上述例 1,取 z 0 = i , θ = 0 z_0=i,θ=0 z0=i,θ=0,通过 w = z 1 − i z 1 + i w=\dfrac{z_1-i}{z_1+i} w=z1+iz1i G 1 G_1 G1映射成单位圆盘
    复合可得 w = z 6 − i z 6 + i w=\dfrac{z^6-i}{z^6+i} w=z6+iz6i
    映射3

  4. 将半圆 G : ∣ z ∣ < 1 , Im  z > 0 G:|z|<1,\text{Im }z > 0 G:z<1,Im z>0 映射成上平面 G ′ : Im  w > 0 G':\text{Im }w > 0 G:Im w>0的映射
    w = ( z + 1 z − 1 ) 2 w=(\dfrac{z+1}{z-1})^2 w=(z1z+1)2
    半圆映射

  5. 将上半平面(半径为无穷大的圆) G : Im  z > 0 G:\text{Im }z > 0 G:Im z>0 映射为一般圆盘 G ′ : ∣ w − w 0 ∣ < R G':|w-w_0| <R G:ww0<R
    首先 G G G z 1 = e i θ z − z 0 z − z ˉ 0 z_1=e^{iθ}\dfrac{z-z_0}{z-\bar z_0} z1=eiθzzˉ0zz0映射为 G 1 : ∣ z 1 ∣ < 1 G_1:|z_1|<1 G1:z1<1
    齐次 G 1 G_1 G1 w = R z 1 + w 0 w=Rz_1+w_0 w=Rz1+w0映射为 G ′ : ∣ w − w 0 ∣ < R G':|w-w_0| <R G:ww0<R
    复合可得 z 1 = R e i θ z − z 0 z − z ˉ 0 + w 0 ( θ ∈ R , Im  z 0 > 0 ) z_1=Re^{iθ}\dfrac{z-z_0}{z-\bar z_0}+w_0\quad(θ\in\R,\text{Im }z_0 > 0) z1=Reiθzzˉ0zz0+w0(θR,Im z0>0)
    半平面映射

  6. 茹科夫斯基(Zhukovskii)映射 w = 1 2 ( z + 1 z ) w=\frac{1}{2}(z+\frac{1}{z}) w=21(z+z1)
    (1) 将圆周 ∣ z ∣ = r > 1 |z| = r>1 z=r>1映射为椭圆周
    z = r e i θ , w = u + i v z=re^{iθ},w=u+iv z=reiθ,w=u+iv,则 { u = 1 2 ( r + 1 r ) cos ⁡ θ v = 1 2 ( r − 1 r ) sin ⁡ θ \begin{cases} u=\frac{1}{2}(r+\frac{1}{r})\cosθ \\ v=\frac{1}{2}(r-\frac{1}{r})\sinθ \end{cases} {u=21(r+r1)cosθv=21(rr1)sinθ
    像的坐标满足方程 u 2 a 2 + v 2 b 2 = 1 \frac{u^2}{a^2}+\frac{v^2}{b^2}=1 a2u2+b2v2=1,其中 a = 1 2 ( r + 1 r ) , b = 1 2 ( r − 1 r ) a=\frac{1}{2}(r+\frac{1}{r}),b=\frac{1}{2}(r-\frac{1}{r}) a=21(r+r1),b=21(rr1)
    即焦点为 ( − 1 , 0 ) , ( 1 , 0 ) (-1,0),(1,0) (1,0),(1,0)的椭圆
    (2) 把扩充 z平面的单位圆外部 ∣ z ∣ > 1 |z|>1 z>1映射成扩充 w平面去掉割线 [ − 1 , 1 ] [-1,1] [1,1]的平面
    可将单位圆外部视为无穷个圆周 ∣ z ∣ = r > 1 |z|=r>1 z=r>1的集合,只须确
    定这无穷个圆周的象即。
    基于(1) 的讨论,知道这无穷个圆周的象是无穷个椭圆周,并且 lim ⁡ r → 1 1 2 ( r + 1 r ) = 1 , lim ⁡ r → 1 1 2 ( r − 1 r ) = 0 \lim\limits_{r\to 1}\frac{1}{2}(r+\frac{1}{r})=1,\lim\limits_{r\to 1}\frac{1}{2}(r-\frac{1}{r})=0 r1lim21(r+r1)=1,r1lim21(rr1)=0,即椭圆周的长半轴趋向1,而短半轴趋向0,因而相应的椭圆周便退化为w 平面上的线段 [ − 1 , 1 ] [-1,1] [1,1]
    lim ⁡ r → + ∞ 1 2 ( r + 1 r ) = + ∞ , lim ⁡ r → + ∞ 1 2 ( r − 1 r ) = + ∞ \lim\limits_{r\to +∞}\frac{1}{2}(r+\frac{1}{r})=+∞,\lim\limits_{r\to +∞}\frac{1}{2}(r-\frac{1}{r})=+∞ r+lim21(r+r1)=+,r+lim21(rr1)=+,故能扫过除 [ − 1 , 1 ] [-1,1] [1,1]外的整个 w平面。
    茹科夫斯基变换


  1. 零点(zero point):若不恒等于零的解析函数 f ( z ) f(z) f(z) z 0 z_0 z0的邻域内可以表示成 f ( z ) = ( z − z 0 ) m g ( z ) f(z)=(z-z_0)^mg(z) f(z)=(zz0)mg(z),其中 g ( z ) g(z) g(z) z 0 z_0 z0解析且 g ( z 0 ) ≠ 0 g(z_0)\neq 0 g(z0)=0,则称 z 0 z_0 z0 f ( z ) f(z) f(z)m级(阶)零点
    g ( z 0 ) ≠ 0 g(z_0)\neq 0 g(z0)=0 g ( z ) g(z) g(z)的连续性可推得,不恒为零的解析函数的零点是孤立的。
    零点判定:若 f ( z ) f(z) f(z) z 0 z_0 z0解析,则 z 0 z_0 z0为函数 f ( z ) f(z) f(z)的m级零点的充要条件是 f ( k ) ( z 0 ) = 0 ( k = 0 , 1 , ⋯   , m − 1 ) ; f ( m ) ( z 0 ) ≠ 0 f^{(k)}(z_0)=0(k=0,1,\cdots,m-1);\quad f^{(m)}(z_0)\neq 0 f(k)(z0)=0(k=0,1,,m1);f(m)(z0)=0 ↩︎ ↩︎

  2. 圆周对称定义:设圆周 C C C的半径为 R R R A , B A,B A,B两点位于从圆心 O O O出发的射线上,且 O A ⋅ O B = R 2 OA\cdot OB=R^2 OAOB=R2,则称点 A A A与点 B B B是关于该圆周的对称点。
    约定圆心的对称点为无穷远点 ∞ ∞
    圆周对称 ↩︎

  • 6
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值