时间序列分析

时间序列是一组按时间顺序排列的观测值 y 1 , y 2 , ⋯   , y t y_1,y_2,\cdots, y_t y1y2,yt

1. 预测——基本概念

预测 是在给定所有当前信息(包括历史数据和可能影响这些事件的任何未来事件的知识)的情况下,对未来事件和条件的预测。预测可以为商业和经济决策、计划和政府政策提供信息。

预测的目标是 在给定观测序列直到现在的时间 t t t,预测时间索引在未来点 t + h t + h t+h 的响应变量。也就是说,给定 y 1 , y 2 , ⋯   , y t y_1,y_2,\cdots, y_t y1y2,yt,预测 Y t + h Y_{t+h} Yt+h,其中 h h h预测区间(forecast horizon)。可以对此进行扩展,即存在预测因子 x 1 , x 2 , ⋯   , x t \mathbf x_1,\mathbf x_2,\cdots, \mathbf x_t x1x2,xt,从而将其视为一个 动态回归(dynamic regression) 问题。

1.1 点预测(Point forecasting)

将一个点的预测定义为: Y ^ t + h = f ( Y 1 : t ) \displaystyle \hat Y_{t+h}=f(Y_{1:t}) Y^t+h=f(Y1:t)

定义平方损失函数为: L ( Y t + h , f ( Y 1 : t ) ) = ( Y t + h − f ( Y 1 : t ) ) 2 \displaystyle L(Y_{t+h},f(Y_{1:t}))=(Y_{t+h}-f(Y_{1:t}))^2 L(Yt+h,f(Y1:t))=(Yt+hf(Y1:t))2,其中 Y 1 : t Y_{1:t} Y1:t 代表 Y 1 , Y 2 , ⋯   , Y t Y_1,Y_2,\cdots, Y_t Y1Y2,Yt

平方误差损失下的最优点预测是条件期望,即 f ( Y 1 : t ) = E ( Y t + h ∣ Y 1 : t ) f(Y_{1:t})=\mathrm E(Y_{t+h}|Y_{1:t}) f(Y1:t)=E(Yt+hY1:t)。即在给定历史数据的情况下近似 Y t + h Y_{t+h} Yt+h 的条件期望。 Y t + h Y_{t+h} Yt+h 有可能是 h h h 的多重值。

1.2 区间预测(Interval forecasting)

密度预测(density forecast) p ^ ( Y t + h ∣ y 1 , y 2 , ⋯   , y t ) \displaystyle \hat p(Y_{t+h}|y_1,y_2,\cdots, y_t) p^(Yt+hy1y2,yt) 是整个条件密度(conditional density) p ( Y t + h ∣ y 1 , y 2 , ⋯   , y t ) \displaystyle p(Y_{t+h}|y_1,y_2,\cdots, y_t) p(Yt+hy1y2,yt) 的估计;

区间预测( interval forecast) :对区间 ( y ^ t + h , L , y ^ t + h , U ) \displaystyle (\hat y_{t+h,L},\hat y_{t+h,U}) (y^t+h,L,y^t+h,U) 的估计,如: P ^ ( y ^ t + h , L < Y t + h < y ^ t + h , U ) = 1 − α \displaystyle\hat P(\hat y_{t+h,L}<Y_{t+h}<\hat y_{t+h,U})=1-\alpha P^(y^t+h,L<Yt+h<y^t+h,U)=1α

工具 Fan chart

2. 时间序列

2.1 时间序列分解(Time series decomposition)

定义一个时间序列为: Y t = f ( T t , S t , C t , E t ) \displaystyle Y_t=f(T_t,S_t,C_t,E_t) Yt=f(Tt,St,Ct,Et)
其中,

  • T t T_t Tt 是趋势分量(trend component);趋势(trend) ——序列在一个长期范围内的增长或衰减的趋势走向。
  • S t S_t St 是季节分量(seasonal component);季节因子(Seasonal) ——由季节因子(seasonal factors,年、周、月或天)引起的序列系统性的均值变化。
  • C t C_t Ct 是循环分量( cyclic component);循环(Cyclic)——当时间序列中存在非固定周期的中长期波动时,就存在循环模式。
  • E t E_t Et 是异常或误差分量( error component);异常(Irregular)——短期波动或噪声。

时间序列分解方法是将一个时间序列分解成不同部分的算法,通常用于季节调整,或增加序列的可解释性。在预测的背景下,分解方法是探索性数据分析的有用工具,允许我们可视化数据中的模式。一个小案例如上图所示。
在这里插入图片描述

时间序列分解方法是将一个时间序列分解成不同部分的算法,通常用于季节调整,或增加序列的可解释性。在预测的背景下,分解方法是探索性数据分析的有用工具,允许我们可视化数据中的模式。一个小案例如上图所示。

3. 预测方法

3.1 随机游动(Random walk)

3.1.1基础随机游动

随机游动方法使用最新观测到数据进行序列的预测,即 y ^ t + h = y t \hat y_{t+h}=y_t y^t+h=yt

假设模型为: Y t = Y t − 1 + ε t \displaystyle Y_t=Y_{t-1}+\varepsilon_t Yt=Yt1+εt,其中 ε t ∼ N ( 0 , σ 2 ) , i . i . d \varepsilon_t\sim N(0,\sigma^2),i.i.d εtN(0,σ2)i.i.d

其模型预测如下:
在这里插入图片描述
模型的点预测和区间预测如下:
在这里插入图片描述
其中, z α 2 \displaystyle z_\frac{\alpha}{2} z2α 是整体分布的临界值。

基于正态误差假设的预测区间: y t ± z α 2 × h σ ^ 2 y_t\pm z_\frac{\alpha}{2}\times\sqrt{h\hat\sigma^2} yt±z2α×hσ^2 ,有:

  • 预测区间是基于 插值( plug-in method) 的,用一个估计值来代替未知的 σ 2 \sigma^2 σ2;
  • 插值方法是一种标准的方法,但是它忽略了参数的不确定性,导致预测区间太窄;
  • 如果误差不是高斯分布的,例如 Bootstrap 算法,此时使用需谨慎。

3.1.2 季节性随机游动(Seasonal random walk)

在季节模式下的时间序列,可以将在相同季节下观测到的最新数据作为预测结果,如下:

y ^ t + h = y t + h − m ,    i f ( h ≤ m ) \hat y_{t+h}=y_{t+h-m},\;if (h\le m) y^t+h=yt+hm,if(hm),其中, m m m 是季节区间长度。

更一般化的形式为: y ^ t + h = y t + h − k m ,      k = ⌊ h − 1 m + 1 ⌋ \displaystyle \hat y_{t+h}=y_{t+h-km},\;\;k=\lfloor\frac{h-1}{m}+1\rfloor y^t+h=yt+hkm,k=mh1+1

3.2 漂移法(Drift method)

漂移法将最新观测数据和之前观测数据的平均值作为预测结果,如下:

y ^ t + 1 = y t + ∑ i = 2 t y i − y i − 1 t − 1 ; \displaystyle \hat y_{t+1}=y_t+\sum^t_{i=2}\frac{y_i-y_{i-1}}{t-1}; y^t+1=yt+i=2tt1yiyi1
y ^ t + h = y t + h × ∑ i = 2 t y i − y i − 1 t − 1 ; \displaystyle \hat y_{t+h}=y_t+h\times\sum^t_{i=2}\frac{y_i-y_{i-1}}{t-1}; y^t+h=yt+h×i=2tt1yiyi1

3.3 单指数平滑(Simple exponential smoothing,SES)

指数平滑 预测 是对过去观测值的加权平均,其中权重随着时间的过去而衰减。即时间越久远,权重越小;当时间序列组份随时间变化而改变时,指数平滑是有效的。

3.3.1 预测规则

预测公式 y ^ t + 1 = ℓ t \displaystyle \hat y_{t+1}=\ell_t y^t+1=t

平滑公式 ℓ t = α y t + ( 1 − α ) ℓ t − 1 \displaystyle \ell_t=\alpha y_t+(1-\alpha)\ell_{t-1} t=αyt+(1α)t1.

其中, ℓ 0 \ell_0 0 是初始值,且 0 ≤ α ≤ 1 0\le\alpha\le1 0α1

3.3.2 指数加权平均移动(Exponentially weighted moving average,EWMA)

单指数平滑也被称为 指数加权平均移动。

具体的, ℓ t \ell_t t 的更新规则如下:
在这里插入图片描述

3.3.3 单指数平滑的特性

  • 有助于预测不断变化的时间序列;
  • α \alpha α 越大越趋向于近期的观测,使得预测更能拟合序列中的近期变化;
  • α \alpha α 越小意味着过去观测的权重越大,使得预测曲线更加平滑;
  • 初始化时经常使 ℓ 0 = y 1 \ell_0=y_1 0=y1,也可将其视为一个参数。

预测曲线随 α \alpha α 的变化如下图所示:
在这里插入图片描述

3.3.4 对参数 α \alpha α 的学习(Estimation)

利用经验风险最小化来对 α \alpha α 进行学习估计,即: α ^ = a r g m i n α ∑ t = 1 N ( y t − ℓ t − 1 ) 2 \displaystyle \hat\alpha=argmin_{\alpha}\sum^N_{t=1}(y_t-\ell_{t-1})^2 α^=argminαt=1N(ytt1)2

其中,每个 ℓ t \ell_t t 都是关于 α \alpha α 的非线性函数,可以使用数值优化方法进行求解。

3.3.5 统计模型描述

预测公式 y ^ t + 1 = ℓ t + ε t \displaystyle \hat y_{t+1}=\ell_t+\varepsilon_t y^t+1=t+εt

平滑公式 ℓ t = α y t + ( 1 − α ) ℓ t − 1 \displaystyle \ell_t=\alpha y_t+(1-\alpha)\ell_{t-1} t=αyt+(1α)t1.

其中, ℓ 0 \ell_0 0 是初始值,且 0 ≤ α ≤ 1 0\le\alpha\le1 0α1, 并且 ε t ∼ N ( 0 , σ 2 ) , i . i . d \varepsilon_t\sim N(0,\sigma^2),i.i.d εtN(0,σ2)i.i.d

以误差修正模式对统计模型进行重新描述,得:
在这里插入图片描述

点估计和区间估计,注意,当误差不是正态分布时,下述假设不成立,应当采取其他假设。
在这里插入图片描述

3.4 趋势校正指数平滑(Trend corrected exponential smoothing)

3.4.1 预测规则

趋势校正指数平滑法也叫 霍尔特指数平滑法(Holt exponential smoothing),遵从时间变化趋势,其预测模型如下:

预测公式 y ^ t + 1 = ℓ t + b t \displaystyle \hat y_{t+1}=\ell_t+b_t y^t+1=t+bt

平滑公式 ℓ t = α y t + ( 1 − α ) ( ℓ t − 1 + b t − 1 ) \displaystyle \ell_t=\alpha y_t+(1-\alpha)(\ell_{t-1}+b_{t-1}) t=αyt+(1α)(t1+bt1)

趋势公式 b t = β ( ℓ t − ℓ t − 1 ) + ( 1 − β ) b t − 1 \displaystyle b_t=\beta(\ell_t-\ell_{t-1})+(1-\beta)b_{t-1} bt=β(tt1)+(1β)bt1

其中, 初始值 ℓ 0 , b 0 \ell_0,b_0 0b0 ,且 0 ≤ α ≤ 1 , 0 ≤ β ≤ 1 0\le\alpha\le1, 0\le\beta\le1 0α10β1

3.4.2 统计模型描述

在这里插入图片描述

3.4.3 点预测

在这里插入图片描述

3.5 Holt Winters 指数平滑(Holt Winters exponential smoothing)

霍尔特-温特斯指数平滑法将 趋势校正方法(the trend corrected method) 推广到季节性数据,它考虑了 加性(additive)乘性(multiplicative ) 季节性因子。

3.5.1 加性Holt Winters 指数平滑(Additive Holt Winters Smoothing)

在这里插入图片描述

其中, L L L 是季节频率, 初始值 ℓ 0 , b 0 \ell_0,b_0 0b0 ,且 0 ≤ α ≤ 1 , 0 ≤ β ≤ 1 , 0 ≤ δ ≤ 1 0\le\alpha\le1, 0\le\beta\le1, 0\le\delta\le1 0α10β1,0δ1 S t − L S_{t-L} StL t = 1 , ⋯   , L t=1,\cdots,L t=1,,L

在这里插入图片描述
其中, [    ] [\;] [] 是模运算符, I i , L = { 0 , i f ( h    m o d L ) ≠ i 1 , i f ( h    m o d L ) = i \displaystyle I_{i,L}= \left\{ \begin{aligned} 0,&& if (h\;mod L)\ne i \\ 1,&& if (h\;mod L)= i \\ \end{aligned} \right. Ii,L={0,1,if(hmodL)=iif(hmodL)=i

3.5.2 乘性Holt Winters 指数平滑(Holt Winters 指数平滑)

在这里插入图片描述

其中, L L L 是季节频率, 初始值 ℓ 0 , b 0 \ell_0,b_0 0b0 ,且 0 ≤ α ≤ 1 , 0 ≤ β ≤ 1 , 0 ≤ δ ≤ 1 0\le\alpha\le1, 0\le\beta\le1, 0\le\delta\le1 0α10β1,0δ1 S t − L S_{t-L} StL t = 1 , ⋯   , L t=1,\cdots,L t=1,,L
在这里插入图片描述

3.6 阻尼趋势指数平滑(Damped trend exponential smoothing)

阻尼趋势指数平滑解决了这样一个问题: 无限期地推断未来的趋势,可能导致难以置信的预测;即预测未来特别久远的值。
在这里插入图片描述

其中, ϕ \phi ϕ 是阻尼因子(damping parameter), 0 ≤ ϕ ≤ 1 0\le\phi \le1 0ϕ1。同理,可将阻尼指数平滑扩展 加性(additive)乘性(multiplicative ) 季节性因子。

4. 预测准确率的度量

Y ^ t + h ∣ t \hat Y_{t+h|t} Y^t+ht(即 Y ^ t + h \hat Y_{t+h} Y^t+h) 作为给定观测值 y 1 : t y_{1:t} y1:t 时对 Y t + h Y_{t+h} Yt+h 的预测,即:

  • Y ^ t + 1 ∣ t \hat Y_{t+1|t} Y^t+1t单步向前(one-step-ahead) 预测;
  • Y ^ t + h ∣ t , h ≥ 2 \hat Y_{t+h|t},h\ge2 Y^t+hth2多步向前(multiple-step-ahead) 预测。

通常使用训练样本之外的平方损失和MSE来度量预测准确率。在商业预测中,还经常使用平均绝对误差和错误率来度量预测准确率。

4.1 平均绝对误差(MAE, mean absolute error)

M A E = m e a n ( ∣ y t − y ^ t ∣ ) MAE=mean(|y_t-\hat y_t|) MAE=mean(yty^t)
MAE 和 RMSE 是以原始数据为单位的。 MSE 的错误率值是超过 MAE的。

4.2 百分比错误率(Percentage errors)

  • 百分比错误率 p t = 100 × ( y t − y ^ t y t ) \displaystyle p_t=100\times(\frac{y_t-\hat y_t}{y_t}) pt=100×(ytyty^t),它的一个优点是与数据规模无关;
  • 更常用的一个度量是 平均绝对百分比错误率(MAPE,mean absolute percentage error) M A P E = m e a n ( ∣ p t ∣ ) MAPE=mean(|p_t|) MAPE=mean(pt)
  • 基于百分比误差的度量方法的缺点是,如果在周期内对任何 t t t ,有 y t = 0 y_t = 0 yt=0 ,则结果都是无穷大的或未定义的;而且如果 yt = 0接近于零,则具有极大值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值