Overfeat,RCNN,Sppnet 2014年三篇经典文献及其创新思路总结

本文总结了2014年Overfeat, RCNN, SPP-Net三篇经典文献的创新点。RCNN采用两阶段检测,Overfeat利用1*1卷积保持位置关系并处理不同尺寸图片,SPP-Net通过固定大小的池化层适应任意输入。三者分别解决了速度、准确度和信息损失问题。" 117606065,8753399,测试boost::hana::maximum.by,"['C++', 'boost库', '函数式编程', 'hana']
摘要由CSDN通过智能技术生成


Overfeat,RCNN,Sppnet 是2014年三篇的三篇经典文献,本文就个人理解做个简单的总结比较,整理其创新思路

0,让人影响深刻的点(关键点)

1,RCNN

  • two stage ,先用selective search提取候选区提升准确度,再计算特征图,进行分类定位操作

2,Overfeat

  • 采用1*1卷积核对特征图全卷积,代替之前的flatten到一个列向量——保留特征图位置关系,且如此可输入不同尺寸图片,最后池化取最佳值即可
  • 全面offset max-pooling:增加多种采样起始点的选择,不仅从0开始向下3*3采样,加上从1和2位置开始的额外向下采样,最终选取最大值,这样可以保留边缘信息

3,SPP-Net

  • 始终将特征图卷积到4x4,2x2,1x1的固定组合,使得卷积神经网络可以有任意大小的输入

1,网络结构,实现步骤概览

1,RCNN

网络结构

啊啊啊

实现步骤

在这里插入图片描述
0. 在数据集上训练CNN 一般用AlexNet+ImageNet

  1. Selective Search 从输入的图像中启发式的搜索出可能包好物体的区域
  2. 将每个区域缩放到统一大小 ,然后送入CNN中提取特征
  3. 使用SVM对提取的特征进行分类,判断是否属于一个类
  4. 通过非极大值抑制 (Non-maxium suppression)输出结果, 对于属于某一特征的候选框,用回归器进一步调整其位置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值