输入整数数组 arr ,找出其中最小的 k 个数。例如,输入4、5、1、6、2、7、3、8这8个数字,则最小的4个数字是1、2、3、4。

题解1:

简单方法,排序,取值

class Solution {
    public int[] getLeastNumbers(int[] arr, int k) {
        Arrays.sort(arr);
        int[] re = new int[k];
        for(int i=1;i<=k;i++){
            re[i-1]=arr[i-1];
        }
        return re;
    }
}

解法二:快排 O(N)

class Solution {
    public int[] getLeastNumbers(int[] arr, int k) {
        if (k == 0 || arr.length == 0) {
            return new int[0];
        }
        // 最后一个参数表示我们要找的是下标为k-1的数
        return quickSearch(arr, 0, arr.length - 1, k - 1);
    }

    private int[] quickSearch(int[] nums, int lo, int hi, int k) {
        // 每快排切分1次,找到排序后下标为j的元素,如果j恰好等于k就返回j以及j左边所有的数;
        int j = partition(nums, lo, hi);
        if (j == k) {
            return Arrays.copyOf(nums, j + 1);
        }
        // 否则根据下标j与k的大小关系来决定继续切分左段还是右段。
        return j > k? quickSearch(nums, lo, j - 1, k): quickSearch(nums, j + 1, hi, k);
    }

    // 快排切分,返回下标j,使得比nums[j]小的数都在j的左边,比nums[j]大的数都在j的右边。
    private int partition(int[] nums, int lo, int hi) {
        int v = nums[lo];
        int i = lo, j = hi + 1;
        while (true) {
            while (++i <= hi && nums[i] < v);
            while (--j >= lo && nums[j] > v);
            if (i >= j) {
                break;
            }
            int t = nums[j];
            nums[j] = nums[i];
            nums[i] = t;
        }
        nums[lo] = nums[j];
        nums[j] = v;
        return j;
    }
}


解法三:计数排序(有数量限制)

class Solution {
    public int[] getLeastNumbers(int[] arr, int k) {
        if (k == 0 || arr.length == 0) {
            return new int[0];
        }
        // 统计每个数字出现的次数
        int[] counter = new int[10001];
        for (int num: arr) {
            counter[num]++;
        }
        // 根据counter数组从头找出k个数作为返回结果
        int[] res = new int[k];
        int idx = 0;
        for (int num = 0; num < counter.length; num++) {
            while (counter[num]-- > 0 && idx < k) {
                res[idx++] = num;
            }
            if (idx == k) {
                break;
            }
        }
        return res;
    }
}

方法四:大根堆(O(NlogK))

本题是求前 K 小,因此用一个容量为 K 的大根堆,每次 poll 出最大的数,那堆中保留的就是前 K 小啦(注意不是小根堆!小根堆的话需要把全部的元素都入堆,那是 O(NlogN)O(NlogN)😂,就不是 O(NlogK)O(NlogK)啦~~)
这个方法比快排慢,但是因为 Java 中提供了现成的 PriorityQueue(默认小根堆),所以实现起来最简单,没几行代码~

// 保持堆的大小为K,然后遍历数组中的数字,遍历的时候做如下判断:
// 1. 若目前堆的大小小于K,将当前数字放入堆中。
// 2. 否则判断当前数字与大根堆堆顶元素的大小关系,如果当前数字比大根堆堆顶还大,这个数就直接跳过;
//    反之如果当前数字比大根堆堆顶小,先poll掉堆顶,再将该数字放入堆中。
class Solution {
    public int[] getLeastNumbers(int[] arr, int k) {
        if (k == 0 || arr.length == 0) {
            return new int[0];
        }
        // 默认是小根堆,实现大根堆需要重写一下比较器。
        Queue<Integer> pq = new PriorityQueue<>((v1, v2) -> v2 - v1);
        for (int num: arr) {
            if (pq.size() < k) {
                pq.offer(num);
            } else if (num < pq.peek()) {
                pq.poll();
                pq.offer(num);
            }
        }
        
        // 返回堆中的元素
        int[] res = new int[pq.size()];
        int idx = 0;
        for(int num: pq) {
            res[idx++] = num;
        }
        return res;
    }
}