论文写作 伪代码符号命名规则

本文详细介绍了在信息技术领域中,不同数据类型如矩阵、标量、变量集等的符号命名规则,包括LaTeX表示法及其意义。内容涵盖了概率分布、向量、矩阵、学习算法等多个关键概念,并提供了伪代码中的变量命名实例,强调了使用希腊字母和其他符号作为临时变量或系数的惯例。此外,还展示了如何在实际问题中,如数据处理和机器学习任务中,应用这些符号和规则来清晰表述问题和解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不同格式的符号命名规则

符号 latex表示 意义
x \mathcal{x} x $\mathcal{x}$ 标量
x \bm{x} x $\bm{x}$ 向量
x \mathbf{x} x $\mathbf{x}$ 变量集
A \mathbf{A} A $\mathbf{A}$ 矩阵
I \mathbf{I} I $\mathbf{I}$ 单位矩阵
χ \chi χ $\mathbf{\chi}$ 样本空间或状态空间
D \mathcal{D} D $\mathcal{D}$ 概率分布
D \mathbf{D} D $\mathbf{D}$ 样本数据(数据集)
H \mathcal{H} H $\mathcal{H}$ 假设空间
H \mathbf{H} H $\mathbf{H}$ 假设集
L \mathfrak{L} L $\mathfrak{L}$ 学习算法
( ⋅ , ⋅ , ⋅ ) (\cdot,\cdot,\cdot) (,,) $(\cdot,\cdot,\cdot)$ 行向量
( ⋅ ; ⋅ ; ⋅ ) (\cdot;\cdot;\cdot) (;;) $(\cdot;\cdot;\cdot)$ 列向量
( ⋅ ) T (\cdot)^\mathbf{T} ()T $(\cdot)^\mathbf{T}$ 向量或者矩阵转置
{ …   } \{\dots\} { } ${\dots}$ 集合
∣ { …   } ∣ |\{\dots\}| { } ∣ { …   } ∣ |\{\dots\}| { } 集合 { …   } \{\dots\} { }中元素个数
∣ ∣ ⋅ ∣ ∣ p ||\cdot || _{p} p $||\cdot || _{p}$ L p L_p Lp范数, p p p损失时为 L 2 L_2 L2范数
P ( ⋅ ) \mathbf{P(\cdot)} P(), P ( ⋅ ∣ ⋅ ) \mathbf{P(\cdot|\cdot)} P() $\mathbf{P(\cdot)} , , ,\mathbf{P(\cdot|\cdot)}$ 概率质量函数,条件概率质量函数
p ( ⋅ ) \mathbf{p(\cdot)} p(), p ( ⋅ ∣ ⋅ ) \mathbf{p(\cdot|\cdot)} p() $\mathbf{p(\cdot)} , , ,\mathbf{p(\cdot|\cdot)}$ 概率密度函数,条件概率密度函数
E . ∼ D   [ f ( ⋅ ) ] \mathbb{E}._{\mathcal{\sim{D}}}{~ [f(\cdot)]} E.D [f()] $\mathbb{E}._{\mathcal{\sim{D}}}{~ [f(\cdot)]}$ 函数 f ( ⋅ ) f(\cdot)
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值