数学建模(LSTM)——新冠疫情对Q市旅游人数的影响

目录

摘    要

1  问题重述

1.1  新冠疫情对Q市旅游人数的影响问题描述

1.2  新冠疫情对Q市旅游人数的影响问题中数据的解释

2  假设和符号

2.1  基本假设

2.2  论文中所用符号说明基本假设

3  模型求解

3.1  模型的建立

3.1.1 LSTM模型介绍

3.1.2 LSTM模型核心思想

3.1.3 理解 LSTM

3.2  求解或编程

3.2.1 实现原理

3.2.3 实现代码:

3.3 解的现实意义

4  敏感性和稳健性分析

4.1  敏感性分析

4.2  稳健性分析

4.3  优缺性分析

5  结    论

参考文献

详细代码及数据:

github

数据

实现代码


   

本论文研究了某市接待国内游客人数的情况,利用该市近四年旅游人数的数据,运用一种特殊的RNN模型——LSTM模型,建立旅游人数预测模型,预测本月数据时考虑前24个月的数据,利用往年数据对模型进行训练,迭代训练2000次,模型的损失函数降低到0.0001水平。分别对2019年和2020年旅游人数进行预测,测试值与真实值总人数相差不到1万人,并利用2019年的测试数据和真实数据的标准差评估了模型的预测效果,标准差为53.86,所以模型预测效果非常好。通过比对2020年真实值与预测值,分析出新冠病毒的全球蔓延对该市旅游人数影响巨大,使该市旅游人数减少了74.67%,大约7012万人

关键词:旅游人数,SLTM,新冠疫情.

问题重述

1.1  新冠疫情对Q市旅游人数的影响问题描述

2019年末的COV-19疫情的出现,在2020年产生了重大影响,全国多行业的发展有所减缓,Q市的旅游业也严重受到波及。近4年来 (2016年~2019年) Q市接待国内游客如下表1所示。根据表中历史数据,试建立数学模型,回答以下问题:

(1)根据2016-1018前三年的数据,建立旅游人数预测模型,预测2019年Q市各月的旅游人数,并和2019年实际人数进行比较,说明此模型的预测效果;

(2)根据2016-2019年四年的数据,以上述模型预测并评价此次新冠病毒的全球蔓延对2020年Q市旅游人数造成的影响(表2为2020年实际旅游人数)。

表1. Q市往年接待国内游客人数(单位:万人)

月年

1月

2月

3月

4月

5月

6月

7月

8月

9月

10月

11月

12月

合计

2016年

47

32

134

153

506

412

876

1226

237

589

142

64

4418

2017

48

35

146

183

713

425

1087

1347

261

754

173

82

5254

2018年

53

31

158

224

861

537

1246

1562

326

924

215

87

6224

2019年

57

34

164

238

976

612

1429

1916

357

1163

206

75

7227

表2. Q市2020年接待国内游客人数(单位:万人)

月年

1月

2月

3月

4月

5月

6月

7月

8月

9月

10月

11月

12月

合计

2020年

32

14

12

17

68

174

657

765

127

342

107

63

2378

                             

1.2  新冠疫情对Q市旅游人数的影响问题中数据的解释

表格中单位为万人,模型预测结果可以采用四舍五入的方法保留四位小数。

假设和符号

2.1  基本假设

1. 旅游需求发展没有跳跃式发展,即需求的发展是渐进的,旅游业发展平稳。

2. 景点本身不发生大的变化。 

3. 检索得到的数据可靠性高。

4. 旅游需求主要受资源,环境,交通,季节,费用和服务质量等因素的影响。

2.2  论文中所用符号说明基本假设

       X:代表月份(1,2,…,12),输入数据

       y:代表每月对应的旅游人数

       tanh:激活函数

       C_t:LSTM细胞状态

模型求解

3.1  模型的建立

3.1.1 LSTM模型介绍

长短期记忆神经网络(long short-term memory,LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说就是比普通RNN在更长的序列中有更好的表现。主要的改变是增加了三个门,分别是输入门、输出门和忘记门。

所有 RNN 都具有一种重复神经网络模块的链式的形式。在标准的 RNN 中,这个重复的模块只有一个非常简单的结构,例如一个 tanh 层。LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于 单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。

1.  LSTM 中的重复模块包含四个交互的层

图中使用的各种元素的图标解释如下:

2.  LSTM 中的图标

3.1.2 LSTM模型核心思想

LSTM 的关键就是细胞状态,水平线在图上方贯穿运行。细胞状态类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。

3. SLTM核心思想

LSTM 有通过精心设计的称作为“门”的结构来去除或者增加信息到细胞状态的能力。门是一种让信息选择式通过的方法。他们包含一个 sigmoid 神经网络层和一个 pointwise 乘法操作。

4. SLTM的门结构

Sigmoid 层输出 0 1 之间的数值,描述每个部分有多少量可以通过。0 代表“不许任何量通过”,1 就指“允许任意量通过”!

LSTM 拥有三个门,来保护和控制细胞状态。

3.1.3 理解 LSTM

       LSTM 中的第一步是决定从细胞状态中丢弃什么信息。这个决定通过一个称为忘记门层完成。该门会读取h_{t-1}x_t,输出一个在 0 1 之间的数值给每个在细胞状态C_{t-1}中的数字。1 表示完全保留0 表示完全舍弃

5. 决定丢弃信息

下一步是确定什么样的新信息被存放在细胞状态中。这里包含两个部分。第一,sigmoid 层称 输入门层” 决定什么值将要更新。然后,一个 tanh 层创建一个新的候选值向量,\tilde{C}_t,会被加入到状态中。

6. 确定更新信息

更新旧细胞状态,C_{t-1}更新为C_t把旧状态与f_t相乘,丢弃掉确定需要丢弃的信息。接着加上i_t * \tilde{C}_t。这就是新的候选值,根据决定更新每个状态的程度进行变化。

7. 更新细胞状态

最终,需要确定输出什么值。这个输出将会基于细胞状态,但是也是一个过滤后的版本。首先,运行一个 sigmoid 层来确定细胞状态的哪个部分将输出出去。接着,把细胞状态通过 tanh 进行处理(得到一个在 -1 1 之间的值)并将它和 sigmoid 门的输出相乘,最终仅仅会输出确定输出的那部分。

8. 输出信息

3.2  求解或编程

3.2.1 实现原理

构建一个具有单个神经元的输入层、具有4LSTM存储单元的隐藏层,以及具有单个值预测的输出层的神经网络。LSTM存储单元采用的是默认的sigmoid激活函数。对网络训练2000epochs,并将batch_size设置为1

模型预测过程中会将新预测到的数据值添加列表,用于预测接下来的数据。采用的方式是逐个月份进行预测,利用前24个月的数据,预测本次数据,所以需进行12次预测。

LSTM的输入数据具有以下形式的特定阵列结构:[样本,时间步长,特征]。在create_dataset()函数中生成的数据集采用的是如下的形式:[样本,特征]。然后需要使用numpy.reshape()函数对数据集进行结构转换,转换时将每个样本作为一个时间步长。

3.2.2 具体过程

1.    导入历年旅游人数的数据,共60条,表示2016-202060个月旅游人。

2.    标准化数据,使用Scikit-Learn中的MinMaxScaler预处理类对数据集进行归一化处理,将数据缩放到0——1

3.    将数据分为训练集和测试集,解决问题一训练集为1-36条数据,测试集为37-48条数据,解决问题二训练集为1-48条数据,测试集为49-60条数据。

4.    创建训练数据集X_train, y_train分别代表模型输入数据集和结果数据集,每一维X_train[i]包含12个数据,及预测月份y_train[i]的前12个月的数据。

5.    模型设置隐含层设置4LSTM存储单元,神经元设置单个输入输出层,采用默认的sigmoid激活函数,loss函数采用标准差。X_train, y_train数据集进行训练,训练周期为epochs=2000batch_size=1,得到数据模型。

6.    重复12轮预测,利用前24个月的数据,每一轮预测一个月份的旅游人数,并将新预测的数据添加到列表中,用于预测下一个月份的旅游人数。

7.    预测数据与真实数据计算标准差,评估模型预测效果。

8.    反标准化预测数据,并打印数据折线图和旅游人数预测结果。

3.2.3 实现代码:


1.    建立模型

def build_model():
    model = Sequential()
    model.add(LSTM(units=4, input_shape=(1, look_back)))
    model.add(Dense(1))
    model.compile(loss='mean_squared_error', optimizer='adam')
    return model



2.    创建数据集

def create_dataset(dataset):
    dataX, dataY = [], []
    # for i in range(len(dataset) - look_back - 1):
    for i in range(len(dataset) - look_back):
        x = dataset[i:i + look_back, 0]
        dataX.append(x)
        y = dataset[i + look_back, 0]
        dataY.append(y)
        # print('X: %s, Y: %s' % (x, y))
    return np.array(dataX), np.array(dataY)



3.    训练模型
model = build_model()
model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, verbose=2) 



4.    模型预测
predict_xlist = dataset[train_size - look_back:train_size + validation_size, :]  # 添加预测x列表
predict_y = []  # 添加预测y列表
predict_validation = []  #添加预测y列表
while len(predict_y) < 12:
    i = 0
    validation = predict_xlist[-timesteps:, :]
    X_validation, y_validation = create_dataset(validation)
    X_validation = np.reshape(X_validation, (X_validation.shape[0], 1, X_validation.shape[1]))  # 变换格式,适应LSTM模型
    # 模型预测数据
    predict_validation = model.predict(X_validation)
    pre = predict_validation.astype('float32')# 12维
    predict_xlist = np.concatenate((predict_xlist, pre), axis=0)
    # 反标准化数据,目的是为了保证MSE的准确性
    predict_validation = scaler.inverse_transform(predict_validation)  # 预测的 19年游客的数据值
    y_validation = scaler.inverse_transform([y_validation])
    predict_y.extend(predict_validation[0])  # 预测的结果y,每次预测的1个数据,添加进去

3.2.4 预测结果及分析:

       实验数据如下:

表3.1. Q市2019、2020年接待国内游客人数真实值及预测值(单位:万人)

2019真实值

2019预测值

2020真实值

2020预测值

1

57

67.4242

32

77.3402

2

34

12.0256

14

26.9391

3

164

193.7576

12

177.5304

4

238

227.8908

17

162.9022

5

976

977.4772

68

1143.6656

6

612

702.357

174

692.6789

7

1429

1361.6063

657

1855.8857

8

1916

1841.384

765

2766.4673

9

357

383.0164

127

477.9497

10

1163

1088.7664

342

1764.9553

11

206

299.5706

107

197.2131

12

75

71.0087

63

46.2876

合计

7227

7226.2848

2378

9389.8151

问题一:

       通过对20162017201836个月份的数据进行训练得到的模型,模型损失函数loss: 5.3235e-7

3.1 2019年数据比对结果(红色为预测值,黑色为真实值)

预测结果如表3.1,2019年预测总人数为7226.2848万人,与真实值相差0.7152万人,真实值与测试值之间的标准差:Validation Score : 53.86 RMSE

       测试值与真实值总人数相差不到1万人,各月人数差距不大,标准差较小,数据变化趋势与真实值变化趋势相符,预测效果非常好。

问题二:

       通过对201620172018201948个月份的数据进行训练得到的模型,模型损失函数loss: 1.3921e-4

3.2 2020年数据比对结果(红色为预测值,黑色为真实值)

预测结果如表3.1,2020年预测总人数为9389.8151万人,与真实值相差7011.8151万人,2020年实际旅游人数占预测人数的25.33%,即新冠疫情造成该市旅游人数减少了约74.67%

3.3 解的现实意义

1. 帮助城市制定旅游发展计划,由历年统计数据可以看出旅游业发展迅速,在没有特殊情况的干扰下,每年游客数目逐年上升,政府应制定中长期旅游发展规划,合理引导促进旅游业的发展,为了适应旅游需求的不断增长,提高服务质量,旅游部门应相应加大在交通,环境改善等方面的投资力度及相互协作能力,同时,要加大对旅游资源的保护力度,防止旅游饱和和超载对环境设施的消极影响

2. 由疫情的影响可以看出,突发事件对该城市旅游业影响巨大,政府在制定旅游发展规划过程中也应做好防护突发事件的措施和准备,将损失降到最小。有必要进一步完善各种重大突发事件的应急机制,使得旅游业在出现重大突发事件的年份中不至于出现滑坡

敏感性和稳健性分析

4.1  敏感性分析

由于数据预测过程中迭代次数足够高,损失函数值通常不大于0.0001,所以模型预测效果通常十分接近真实值,可以很好捕捉到历史数据中的数据变化趋势。因此模型对数据十分敏感。

4.2  稳健性分析

由于训练数据不够丰富,模型只适合近期数据预测,对于后一年的数据可以良好预测,如果对后几年的数据进行预测的话,仅靠近三四年的数据不能保证预测效果,单数如果能够提供更多的历年数据,可以预测更远。因此稳健性良好。

4.3  优缺性分析

优势:训练时间短,精度高,准确度高,易操作。

不足:由于预测过程中用到了之前预测的值而不是真实值,在预测月份过多的情况下容易出现偏差。但是在数据足够多的情况下可以避免这种状况。

    

通过对20162017201836个月份的数据进行训练得到的模型,模型损失函数loss: 5.3235e-7。预测结果如表3.1,2019年预测总人数为7226.2848万人,与真实值相差0.7152万人,真实值与测试值之间的标准差:Validation Score : 53.86 RMSE。测试值与真实值总人数相差不到1万人,各月人数差距不大,标准差较小,数据变化趋势与真实值变化趋势相符,预测效果非常好。

       通过对201620172018201948个月份的数据进行训练得到的模型,模型损失函数loss: 1.3921e-4。预测结果如表3.1,2020年预测总人数为9389.8151万人,与真实值相差7011.8151万人,2020年实际旅游人数占预测人数的25.33%,即新冠疫情造成该市旅游人数减少了约74.67%

      

参考文献

[1] 关于香港旅游需求的数学建模预测模型数学建模https://wenku.baidu.com/view/efbfb1acbdd126fff705cc1755270722192e59ef.html

[2] 杭州市未来旅游需求的预测(数学建模) https://wenku.baidu.com/view/9f57310d76c66137ee0619a3.html

[3]   国际旅行人数预测——使用LSTM https://blog.csdn.net/sun___m/article/details/83898522

[4] 【Keras】学习笔记18:LSTM时间序列问题预测:国际旅行人数预测

https://blog.csdn.net/qq_49189614/article/details/107767563

[5]   基于LSTM的时间序列数据(多步)预测https://www.jianshu.com/p/3b60cefa3109

[6]   keras中使用LSTM实现一对多和多对多https://blog.csdn.net/chaofeili/article/details/89319410

[7]   numpy的ndarray取数操作

https://blog.csdn.net/weixin_43251493/article/details/106157460

详细代码及数据:

github

https://github.com/YTIANYE/SMTL_ForecastNumberOfTourists

注意:两个分支代码不同,分别解决一个问题

数据

Month,Passengers
2016-01,47
2016-02,32
2016-03,134
2016-04,153
2016-05,506
2016-06,412
2016-07,876
2016-08,1226
2016-09,237
2016-10,589
2016-11,142
2016-12,64
2017-01,48
2017-02,35
2017-03,146
2017-04,183
2017-05,713
2017-06,425
2017-07,1087
2017-08,1347
2017-09,261
2017-10,754
2017-11,173
2017-12,82
2018-01,53
2018-02,31
2018-03,158
2018-04,224
2018-05,861
2018-06,537
2018-07,1246
2018-08,1562
2018-09,326
2018-10,924
2018-11,215
2018-12,87
2019-01,57
2019-02,34
2019-03,164
2019-04,238
2019-05,976
2019-06,612
2019-07,1429
2019-08,1916
2019-09,357
2019-10,1163
2019-11,206
2019-12,75
2020-01,32
2020-02,14
2020-03,12
2020-04,17
2020-05,68
2020-06,174
2020-07,657
2020-08,765
2020-09,127
2020-10,342
2020-11,107
2020-12,63

实现代码

"""
LSTM时间序列问题预测:旅行人数预测
"""
import numpy as np
# import mxnet as mx
from matplotlib import pyplot as plt
from pandas import read_csv
import math
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error

seed = 7
batch_size = 1
epochs = 500
# filename = 'international-airline-passengers.csv'
filename = 'data_visitors.csv'
footer = 0
look_back = 12
predict_steps = 12
timesteps = 24  # 构造x,为72个数据,表示每次用前72个数据作为一段

def create_dataset(dataset):
    # 创建数据集
    dataX, dataY = [], []
    # for i in range(len(dataset) - look_back - 1):
    for i in range(len(dataset) - look_back):
        x = dataset[i:i + look_back, 0]
        dataX.append(x)
        y = dataset[i + look_back, 0]
        dataY.append(y)
        # print('X: %s, Y: %s' % (x, y))
    return np.array(dataX), np.array(dataY)


def build_model():
    model = Sequential()
    model.add(LSTM(units=4, input_shape=(1, look_back)))
    # model.add(LSTM(units=4, input_shape=(look_back, 1)))
    # model.add(Dense(units=12))
    model.add(Dense(1))
    # 均方误差,也称标准差,缩写为MSE,利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率.
    model.compile(loss='mean_squared_error', optimizer='adam')
    return model

def train(trainsize,year):
    # 设置随机种子
    np.random.seed(seed)

    # 导入数据
    data = read_csv(filename, usecols=[1], engine='python', skipfooter=footer)  # skipfooter=10 则最后10行不读取
    dataset = data.values.astype('float32')
    # 标准化数据
    scaler = MinMaxScaler()
    dataset = scaler.fit_transform(dataset)
    train_size = int(len(dataset) * trainsize)  # 训练集和验证集长度
    validation_size = int(len(dataset) * 0.2)
    train = dataset[0:train_size, :]
    # validation = dataset[train_size - look_back:train_size + validation_size, :]

    ####  循环测试

    # 创建dataset,使数据产生相关性
    X_train, y_train = create_dataset(train)
    # 添加到循环
    # X_validation, y_validation = create_dataset(validation)

    # 将数据转换成[样本,时间步长,特征]的形式
    X_train = np.reshape(X_train, (X_train.shape[0], 1, X_train.shape[1]))
    # 添加到循环
    # X_validation = np.reshape(X_validation, (X_validation.shape[0], 1, X_validation.shape[1]))

    # 训练模型
    model = build_model()
    model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, verbose=2)  # 通过设置详细0,1或2,您只需说明您希望如何“看到”每个时期的训练进度. verbose = 0会显示任何内容(无声) verbose = 1会显示一个动画进度条,如下所示: progres_bar verbose = 2只会提到这样的纪元数:

    predict_xlist = dataset[train_size - look_back:train_size + validation_size, :]  # 添加预测x列表
    # predict_xlist = []
    predict_y = []  # 添加预测y列表
    predict_validation = []  #添加预测y列表
    # predict_xlist.extend(train.tolist())     # 已经存在的最后timesteps个数据添加进列表,预测新值
    while len(predict_y) < 12:
        i = 0
        # validation = np.array(predict_xlist[-timesteps:])
        validation = predict_xlist[-timesteps:, :]
        # 从最新的predict_xlist取出timesteps个数据,预测新的predict_steps个数据(因为每次预测的y会添加到predict_xlist列表中,为了预测将来的值,所以每次构造的x要取这个列表中最后的timesteps个数据词啊性)
        # validation = dataset[train_size - look_back:train_size + validation_size, :]
        X_validation, y_validation = create_dataset(validation)
        X_validation = np.reshape(X_validation, (X_validation.shape[0], 1, X_validation.shape[1]))  # 变换格式,适应LSTM模型
        # 模型预测数据
        predict_validation = model.predict(X_validation)
        # predict_xlist.extend(predict_validation[0])  # 将新预测出来的predict_steps个数据,加入predict_xlist列表,用于下次预测
        pre = predict_validation.astype('float32')# 12维
        predict_xlist = np.concatenate((predict_xlist, pre), axis=0)
        # np.concatenate((predict_xlist, pre))

        # 反标准化数据,目的是为了保证MSE的准确性
        predict_validation = scaler.inverse_transform(predict_validation)  # 预测的 19年游客的数据值
        y_validation = scaler.inverse_transform([y_validation])
        predict_y.extend(predict_validation[0])  # 预测的结果y,每次预测的1个数据,添加进去,

    #打印预测游客数量
    # print(year + '年预测游客数量:')
    # # print(predict_validation)
    # print(predict_y)

    ####循环测试

    # 评估模型
    validation_score = math.sqrt(mean_squared_error(y_validation[0], predict_validation[:, 0]))
    print('Validation Score : %.2f RMSE' % validation_score)

    # 构建通过评估数据集进行预测的图表数据
    predict_validation_plot = np.empty_like(dataset)
    predict_validation_plot[:, :] = np.nan
    predict_validation_plot[train_size + validation_size - len(predict_validation): train_size + validation_size, :] = predict_validation

    # 图表显示
    dataset = scaler.inverse_transform(dataset)
    plt.xlabel('Month')
    plt.ylabel('Passengers')
    plt.plot(dataset, color='black')
    plt.plot(predict_validation_plot, color='red')
    plt.show()

    return predict_validation

if __name__ == '__main__':
   # train(0.6,'2019')
   i = 0
   while i < 6:
    predict_validation = train(0.8,'2020')
    print('########## 2020年预测游客数量:', i)
    print(predict_validation)
    i += 1

旅游线路设计和比对     现在,旅游越来越成为消费时尚,旅游者外出旅游大多是为了游览名山大川、名胜古迹,轻松、娱乐、增长见识是他们的主要需求。作为旅游行业,开发出更好的旅游产品是很重要的,而设计好旅游线路是其中的一个重要环节。设计者应根据不同的游客需求设计出各具特色的线路。比如不少商人洽谈生意之余也需要到处旅行,他们的旅行多是出于商务方面的动机,商务旅游的特点是消费较高,喜欢入住高级酒店,为业务交往需要经常在餐厅宴请宾客,而且来去匆匆;而针对退休老年人的旅游线路就应该轻松、休闲、节奏稍慢,费用适中等等。旅游场发展日月异,游客的需求与品位也在不断地变化和提高。为了满足游客的需要,旅行社应及时把握旅游场动态,注重产品、线路的开发,并根据场情况及时推出的有特色的旅游线路。一条具有特色的旅游线路,有时能为旅行社带来惊人的经济收入与社会效益。 旅游线路通常意义上指在旅游地或者旅游区内旅游者参观游览所经过的路线。旅游线路是一个区域内若干景点在不同的空间布置,对这些景点游览或活动的先后顺序与连接可有多种不同的串联方式,由此组合成不同的旅游线路。它是依赖于景区()分布的线型产品,这种产品的简单结构是通过道路对景点之间的有限连接,一般以交通线路设计为主要表现手法。 现在某旅行社为了进一步开发旅游场,比如以海南省旅游为例,想对旅游线路进行重整合,合理设计。一般考虑旅游线路,从经营方或者供给方出发,会涉及下面的五个方面:一是空间距离;二是运动路线;三是组织形式;四是旅游目的;五是各类旅游线路之间的关系。主要设计原则有:一是资源导向原则,如注意旅游地的主题特色;二是以游客旅游需求和目的为主的原则;三是场细分区位原则;四是供给全面原则;五是时效优先效益兼顾原则,如注意冷热景点搭配、注意向开发景点引导;六是安全第一原则。设计出来的旅游线路必须重视作为旅游活动主体的心理和生理需求,给旅游活动带来方便,提高旅游者的满意度和出游积极性,进而促进旅游地的可持续发展。 旅游线路的设计关键是适应场需求,具体而言,它必须最大限度地满足旅游者的需求,如成本最小,日程最方便等等。对于旅行社来讲,又要尽可能在满足旅游者需要的前提下降低运营成本,提高效益。在设计时充分考虑景点资源、
### LSTM模型在数学建模中的应用 #### 方法概述 长期短期记忆(LSTM)网络是一种特殊的循环神经网络(RNN),能够学习长时间序列的信息。这种特性使得LSTM非常适合处理时间序列预测、自然语言处理等问题,在数学建模竞赛中也得到了广泛应用。 对于中小微企业的信贷决策问题,可以通过构建基于PaddlePaddle框架下的LSTM模型来进行信用风险评估[^1]。具体来说,该过程涉及以下几个方面: - **数据收集与准备** 数据集通常包含历史财务报表、场表现以及其他可能影响贷款偿还能力的因素。这些原始数据需要经过一系列预处理操作才能被输入到LSTM模型中进行训练。这包括但不限于缺失值填补、异常值检测以及特征缩放等步骤[^4]。 - **模型架构设计** 设计合理的LSTM层结构至关重要。考虑到实际应用场景的需求,可以选择不同类型的单元组合方式来提高性能。例如,采用多层堆叠的方式增加表达力;引入注意力机制突出重要时刻的影响;或是探索一些改进版本如带有深度门控机制的变体以增强捕捉复杂模式的能力[^3]。 - **训练流程实施** 使用优化算法调整权重参数直至收敛为止。期间还需注意设置合适的超参配置比如批次大小(batch size)、迭代次数(epoch number),并监控损失函数变化趋势确保有效拟合目标变量而非过拟合现象发生。 - **结果解释与可视化展示** 完成上述工作之后便可以获得对未来一段时间内企业违约概率的一个估计值。为了更好地理解所得结论背后的原因所在,则有必要借助图表工具直观呈现关键指标随时间演变规律及其相互间关联程度如何。 ```python import paddle from paddle.nn import Linear, Embedding, Conv2D import numpy as np class LSTMCreditModel(paddle.nn.Layer): def __init__(self, input_dim=784, hidden_size=512, num_layers=2, output_dim=10): super(LSTMCreditModel, self).__init__() # Define an LSTM layer with specified parameters. self.lstm = paddle.nn.LSTM(input_size=input_dim, hidden_size=hidden_size, num_layers=num_layers) # Fully connected layer to map from hidden state space to label space. self.fc = Linear(hidden_size, output_dim) def forward(self, inputs): lstm_out, _ = self.lstm(inputs) out = self.fc(lstm_out[:, -1]) return out ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值