《Mostly Harmless Econometrics 》第二章:选择性偏误与随机实验

CHAPTER2 in Most-Harmless-Econometrics

内容

《基本无害的计量经济学》第二章:理想实验

使用软件

STATA16 MP

理论

1. 选择性偏差

我们可以举一个非常简单的例子来表述因果关系,去医院能让人变得更加健康吗?
NHIS对上述问题进行过相关数据统计,下表给出了受调群众最近去过医院和没去过医院的人的平均健康状况。


在这里插入图片描述
可见两者之间的平均差距是0.72,那么这就可以说明去医院会使人的健康变得更糟糕吗?
这种简单的直接比较忽略了一个严重的问题:选择去医院的人的健康状况可能本来就很差。更进一步来说:那些去医院接受治疗的人
的健康水平可能还不如没去过医院的人,对于这些人或许不去医院会使其身体状况更差,即使经过医院治疗也不一定能赶上不去医院的人。

为了进一步描述上述分析中忽略的因素,可以把接受医院与否划分为一个虚拟变量:

潜 在 结 果 = { Y 1 i     i f   D i = 1 Y 0 i     i f   D i = 0 潜在结果= \begin{cases} Y_{1i} \ \ \ if\ D_i=1 \\ Y_{0i} \ \ \ if\ D_i=0 \end{cases} ={ Y1i   if Di=1Y0i   if Di=0


也就是说,如果某人没有去医院,那么他的健康状况是 Y 0 i Y_{0i} Y0i,如果假设这个人去过医院,那么他的健康状况将是 Y 1 i Y_{1i} Y1i,这两者之间的差异即可表示为某人在医院接受治疗对其健康状况产生的影响——因果效应。
最终观测到某人的潜在健康状态结果 Y i Y_i Yi可以用下述线性组合表示:
Y i = { Y 1 i     i f   D i = 1 Y 0 i     i f   D i = 0 = Y 0 i + ( Y 1 i − Y 0 i ) D i Y_i= \begin{cases} Y_{1i}\ \ \ if \ D_i=1 \\ Y_{0i} \ \ \ if\ D_i=0 \end{cases} =Y_{0i}+(Y_{1i}-Y_{0i})D_i Yi={ Y1i   if Di=1Y0i   if Di=0=Y0i+(Y1iY0i)Di
可见当 D i = 1 D_i=1 Di=1时, Y 1 i − Y 0 i Y_{1i}-Y_{0i} Y1iY0i即表示个体去医院对健康的影响,对于不同的个体,其处理效应的大小也有所差异。但是,在现实生活中,同时观测到上述 Y 1 i Y_{1i} Y1i Y 0 i Y_{0i} Y0i 几乎是不可能的。所以我们需要尽可能的观测同一类人去医院治疗和不去医院治疗对健康的影响。
下面的公式就将去医院接受治疗与否带来的对平均健康水平的差异与平均因果效应(average casual effect)联系在一起:
E [ Y i ∣ D i = 1 ] − E [ Y i ∣ D i = 0 ] = ( E [ Y 1 i ∣ D i = 1 ] − E [ Y 0 i ∣ D i = 1 ] ) + ( E [ Y 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值