【直觉建设】归纳偏差与选择性偏差

本文探讨了归纳偏差与选择性偏差在深度学习中的区别,包括正则项、BatchNormalization/LayerNormalization的应用,以及如何在不同网络结构中运用归纳偏差来提升模型泛化。重点介绍了解决过拟合与选择性偏差的先后顺序和常见策略。

归纳偏差

归纳偏差(Inductive biases)可以理解为一种先验或约束,他能够帮助我们在多个可能的模型中选择出一个。比如奥卡姆剃刀原则,他指示我们,在多个模型都符合条件时,我们选择最简单的那个

正则项(regularization term)可以看作是在奥卡姆剃刀原则下指导的一个表现,我们想要选择最简单的那个模型,可以通过使得模型所有的系数朝零的方向进行约束、调整或缩小;所以,最小化正则项,就可以看作是我们加在模型中的归纳偏置

除了最小化正则项外,CNN中的 也是较为常见的归纳偏差

选择性偏差

选择性偏差(selection bias)是指,用于分析的数据不能保证随机化得方法获得,因此从样本中分析的结果不能代表总体特征

如果样本的选择过程依赖了某个变量,而这个变量恰好是你关注的的变量的共同结果,则会导致选择性偏差

两者区别

归纳偏差,是我们主动加在模型中的,为了解决一些问题而存在的;而选择性偏差,是我们被动引起的,可能来源于数据集收集过程中不可避免的结果

加入归纳偏差可以提升模型的泛化能力,而解决选择性偏差才可以提升泛化能力

适用情况

并不是所有的模型都需要添加归纳偏差,因为比如最小化正则项这个归纳偏差,本质上来说,是为了解决模型过拟合,即模型过度地关注数据集的某些“个性”,从而限制了模型的泛化能力;然而,如果有些模型中出现了选择性偏差,那么正确的问题解决顺序是:解决选择性偏差–>模型出现问题(比如过拟合)–>加入归纳偏差

常见的归纳偏差

下面,介绍一些深度学习模型中常见的归纳偏差,比如为了解决过拟合问题的正则项和dropout;为了解决梯度消失问题的Batch Normalization和Layer Normalization;以及全连接层、卷积网络、循环神经网络、图网络这些常见的网络结构中用到的归纳偏差。下面我们将一一介绍

1. 正则项

为了更好地理解,为何"最小化正则项"可以成为一种归纳偏差,我们可以看下图:
在这里插入图片描述
以其中的第三个为例,这张图描述的是: x 2 + y 2 = m x^2+y^2=m x2</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值