【科研】ET-BERT资料库梳理

作者原repo链接

https://github.com/linwhitehat/ET-BERT

0.资料总库

分为数据+模型+语料库
在这里插入图片描述

1.数据集

包含fine-tuning数据集(cstnet-tls 1.3)与公开数据集(USTC-TFC、VPN-app、VPN-service的数据包级和流级)目录链接
在这里插入图片描述

1.1 微调-数据集组成

fine-tuning_dataset目录下的数据集,fine-tuning的数据集是tsv的
在这里插入图片描述

1.2 预训练-数据包级-组成

Open-Datasets目录下的数据集
在这里插入图片描述

1.3 预训练-流级-组成

Open-Datasets\flow-level目录下的数据集
在这里插入图片描述

1.4 预训练-组成(不在总资料库的数据集)

这部分应该是预训练使用的数据集(不太确定,等我看看代码先:(

cstnet-tls 1.3 dataset
下面是cstnet-tls 1.3 datasetlabel
在这里插入图片描述
该数据集包含两个压缩文件,一个是flow级别的,另一个是packet级别的:
在这里插入图片描述
以flow_dataset为例:
CSTNET-TLS 1.3的流级别的数据集

  1. 该数据集有120个类别
  2. 每个类别有500个样本
  3. 数据部分以x_开头,标签部分以y_开头
  4. 有5种数据类型,包括direction, length, message type, time and datagram
  5. 不同的数据文件分别被划分为train, test, valid三种

在这里插入图片描述

2. corpora(语料库)

语料库
在这里插入图片描述

3. 模型

预训练模型
在这里插入图片描述

<think>好的,我现在需要处理用户关于ET-BERT模型的查询。用户希望了解该模型的定义、实现方式和应用场景。首先,我得回顾一下提供的引用内容,确保信息准确无误。 根据引用[1]和[4],ET-BERT是一个基于Transformer的预训练模型,专用于加密流量分类。由林新杰等人在WWW 2022上发表。模型使用上下文感知的数据报表示法,处理加密通信数据。需要明确这些基本信息,并指出其创新点在于多层注意力机制,学习数据包间的上下文关系,如引用[4]所述。 接下来,实现方式部分。引用[2]提到微调和预训练结构相似,任务特定数据输入预训练模型,端到端微调所有参数。可能需要解释模型结构,比如Transformer的多头注意力和前馈网络,以及嵌入层的处理。引用[3]提到不同模块的量化效应,但用户的问题可能更关注整体结构,所以这部分可能不需要深入,除非用户问优化细节。 应用场景方面,引用[1]和[4]都提到加密流量分类,网络安全如恶意软件检测、隐私合规监控,以及网络流量管理。需要具体举例,比如识别恶意加密流量,运营商优化网络带宽分配等。 生成相关问题时,要考虑用户可能的后续疑问,比如模型结构细节、训练数据来源、与传统方法的比较,或者在不同场景下的效果差异。这些问题应基于现有引用内容,确保有据可依。 需要注意引用标注,在回答中适当位置添加引用标识,比如在介绍模型时引用[1][4],实现部分引用[2][3]。同时保持语言口语化,避免使用专业术语过多,但又要准确。最后检查是否符合格式要求,如数学公式的正确使用,但根据用户问题,可能这部分涉及较少,主要关注自然语言描述。 现在,确保各部分结构清晰,先定义,再实现,最后应用场景,每个部分简明扼要,并自然融入引用。然后生成相关问题,引导用户深入探讨。</think>### ET-BERT 模型介绍与解析 #### 1. **定义与核心思想** ET-BERT 是一种基于 Transformer 架构的预训练模型,专门用于加密网络流量的分类任务。它通过分析数据包的上下文关系和传输模式,解决传统方法难以处理加密通信内容的问题[^1][^4]。其创新点包括: - **上下文感知表示**:将单个数据包的语义与流量序列的时序特征结合,捕捉加密流量中的隐含模式。 - **多层级注意力机制**:学习数据包内(如协议字段)和数据包间(如流量行为)的关联性。 #### 2. **实现方式** ET-BERT 的实现可分为以下关键步骤: 1. **预训练** - 使用大规模无标签加密流量数据,通过掩码语言建模(Masked Language Modeling, MLM)任务训练模型,使其能预测被遮蔽的流量特征[^1]。 - 输入数据表示为: $$ \text{Input} = [\text{CLS}] \oplus \text{Packet}_1 \oplus \text{Packet}_2 \oplus \cdots \oplus \text{Packet}_n $$ 其中 $[\text{CLS}]$ 用于分类任务的特征聚合[^2]。 2. **微调** - 将预训练模型适配到具体任务(如恶意流量检测),输入带标签的数据并端到端调整所有参数。 - 关键模块包括多头自注意力(Multi-Head Self-Attention)和前馈网络(FFN),引用[3]指出这两部分对量化敏感,影响模型压缩效果。 #### 3. **应用场景** ET-BERT 的典型应用包括: - **网络安全检测**:识别恶意加密流量(如勒索软件通信)[^4]。 - **隐私合规监控**:检测敏感数据传输是否符合 GDPR 等法规[^1]。 - **网络流量管理**:帮助运营商优化带宽分配(如区分视频流与文件下载)。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值