给定一个长度为n的整数数列,请你计算数列中的逆序对的数量。
逆序对的定义如下:对于数列的第 i 个和第 j 个元素,如果满足 i < j 且 a[i] > a[j],则其为一个逆序对;否则不是。
输入格式
第一行包含整数n,表示数列的长度。
第二行包含 n 个整数,表示整个数列。
输出格式
输出一个整数,表示逆序对的个数。
数据范围
1≤n≤100000
输入样例:
6
2 3 4 5 6 1
输出样例:
5
做法:直接暴力去n2是过不了的,这里利用了归并排序的性质,记录排序时,a[i] > a[j]时, a[i]项移动的相对位置。
#include <iostream>
using namespace std;
#define int long long
const int N = 1e6 + 100;
int a[N], b[N], cnt;
void merge(int a[], int l, int r){
if(r - l < 1) return;
int mid = (l + r) / 2;
merge(a, l, mid);
merge(a, mid + 1, r);
int i = l, j = mid + 1;
for(int k = l; k <= r; k++){
if(j > r || i <= mid && a[i] <= a[j]){
b[k] = a[i++];
}else{
cnt += mid - i + 1;
b[k] = a[j++];
}
}for(int k = l; k <= r; k++){
a[k] = b[k];
}
}
signed main(){
int n; cin >> n;
for(int i = 1; i <= n; i++) cin >> a[i];
merge(a, 1, n);
cout << cnt;
return 0;
}
/*
6
2 3 4 5 6 1
*/