计算机视觉
文章平均质量分 59
StrongerTang
计算机视觉、自动驾驶相关技术分享,主流自动驾驶公司都可内推!免费分享各类资料!擅长简历修改、求职(保研)指导,也帮忙脱单相亲,数万互联网、汽车、金融、公务员等人脉!
展开
-
“全栈自研”还是“全栈可控”?车企自动驾驶自研趋势分析,研报分享
越来越多的车企重视技术上的独立,并加大了对于自动驾驶“全栈自研”的宣传力度,从“全栈自研” 字面理解看来,原先自动驾驶需要产业链上下游多方协作,而某个车企做到了一家企业包揽自动驾驶各个模块;但事实并非如此,宣称“全栈自研”的车企并不能完全切断与供应链的合作。原创 2024-02-06 21:23:25 · 609 阅读 · 0 评论 -
鉴智机器人:以视觉3D理解为核心的下一代自动驾驶系统
鉴智机器人合伙人刘竞秀:以视觉3D理解为核心的下一代自动驾驶系统原创 2023-01-06 13:00:21 · 615 阅读 · 1 评论 -
更好、更快、更强的多任务全景感知YOLOPv2,目标检测、freespace、车道线检测
YOLOPv2,推荐!原创 2022-09-04 19:31:37 · 3731 阅读 · 4 评论 -
Ganet车道线检测小数据训练模型的多场景测试demo(测试集),山城重庆的高速路、快速路测试
车道线检测GANET: A Keypoint-based Global Association Network for Lane Detection原创 2022-07-26 19:47:31 · 1322 阅读 · 3 评论 -
nuscenes数据集3D MOT demo,端到端的目标检测和跟踪,检测跟踪联合框架
nuscenes数据集3D MOT demo,端到端的目标检测和跟踪,检测跟踪联合框架原创 2022-07-24 19:49:38 · 1234 阅读 · 1 评论 -
车道线检测2022新工作整理,2D、3D都有
车道线检测2022新工作整理,2D、3D都有原创 2022-06-26 21:22:06 · 3046 阅读 · 1 评论 -
MUTR3D:基于3D到2D查询的多相机跟踪框架 CVPR2022
多相机多目标跟踪原创 2022-06-25 14:24:58 · 1262 阅读 · 1 评论 -
车道线检测新SOTA CLRNet: Cross Layer Refinement Network for Lane Detection CVPR2022
车道线检测新SOTA,CVPR2022原创 2022-06-05 21:28:07 · 1910 阅读 · 2 评论 -
端到端的多任务感知网络:目标检测、车道线、freespace,性能优于YOLOP。HybridNets: End-to-End Perception Network
端到端的多任务感知网络:目标检测、车道线、freespace,性能优于YOLOP,速度可实时。论文 HybridNets: End-to-End Perception Network,代码已开源。原创 2022-05-31 18:19:23 · 2163 阅读 · 0 评论 -
追势科技城市记忆领航,实现L3级行泊一体自动驾驶的最佳落地途径
城市记忆领航,实现L3级行泊一体自动驾驶的最佳落地途径 追势科技 2022年5月26日晚,由追势科技联合创始人、CTO蒋如意带来的《城市记忆领航,实现L3级行泊一体自动驾驶的最佳落地途径》,介绍了高精地图“保鲜”、城市记忆领航系统的算法架构等,感兴趣的朋友看一下。欢迎对车道线检测、车位检测、freespace、目标跟踪、目标检测、目标分类、目标分割、深度估计等任务及自动驾驶技术(感知、...原创 2022-05-31 16:52:46 · 369 阅读 · 0 评论 -
CVPR2022车道线检测SOTA工作CLRNet在Tusimple数据集测试demo,助力自动驾驶早日落地
车道线检测、自动驾驶!原创 2022-05-21 21:46:10 · 1440 阅读 · 0 评论 -
BEVSegFormer:一个来自任意摄像头的BEV语义分割方法
今天给大家分享一篇小汤前同事在分割方向的近期新工作BEVSegFormer,论文已经上传在arXiv上,完整题目是"BEVSegFormer: Bird’s Eye View Semantic Segmentation From Arbitrary Camera Rigs"。论文链接:https://arxiv.org/abs/2203.04050。文章作者除了“Zhangjie Fu”小汤不认识之外,其他都是我在纽劢科技Nullmax 实习期间的同事。关于纽劢科技的介绍可以看下面文章:(点击进入)原创 2022-05-02 18:37:03 · 2609 阅读 · 0 评论 -
BEVSegFormer:任意摄像头配置的BEV语义分割方法demo
BEVSegFormer:任意摄像头配置的BEV语义分割方法 分享一篇分割方向的近期新工作BEVSegFormer,文章作者是小汤在纽劢科技Nullmax 实习期间的同事。BEV(鸟瞰图)下的语义分割是自动驾驶中一项十分重要的任务。尽管已经吸引了大量的研究投入,灵活处理车辆上安装的任意相机配置(单个或多个摄像头),仍旧是一个不小的挑战。为此,提出了基于Transformer的BEV语义...原创 2022-05-02 17:11:01 · 1122 阅读 · 0 评论