论文:3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration

一、概述:
本文来在弱监督的条件下,通过学习的方式得到三维特征探测器和描述器,进行点云匹配。突出点在于:
(1)探测器和描述器都是通过学习的方式得到,不需要进行人工标注。
(2)注意力机制用来调整每个描述器的贡献度,体现每个输入点作为显著点的可能性。

二、相关工作:
(1)因为在点云中进行细致的点对点的标注太难,所以很多的方法都是值学习描述器,而探测器交给随机采样;
(2)部分人工3D描述器,表现不佳;
(3)介绍了部分2D的深度学习描述器,介绍了一些2D关键点探测器的探测方法,其中的一个工作启发了本文的注意力机制;
(4)介绍一些深度学习在3D配准下的应用,其中涉及到 1)人工探测器+深度描述器 ;或者 2)深度探测器+人工描述器。启发了本文的深度学习的探测器+深度学习的描述器。

三、主体内容
在这里插入图片描述
先进行采样,得到点云的部分点,然后以其为中心进行聚类。输入这些聚类到网络中,主要有两个部分,探测器和描述器。
探测器有两个作用:
(1)得到这个聚类的权重;
(2)输出这个聚类的空间调整参数;
空间调整参数用于调整各个聚类的空间位置,消除不同位置为后续的相似性带来的干扰。
随后到达描述器部分,这个部分的作用是提取各个聚类的深度特征,用于比较其相似性。由于A点云的任一聚类都有可能和B点云中的任一聚类相匹配,所以需要求得一个相似矩阵。从某一个点云出发,例如A点云,它的每一个聚类都会在B点云中存在一个最相似聚类,也就是深度特征最接近的聚类,对应关系就如此确定下来。前一步探测器得到的聚类的权重在此就用上了。该权重反映对应聚类的显著程度,也就是这个点是不是关键的点。越是关键的点,它的相似性就越有说服力,对后来我们判断这两个点云是否匹配就越有贡献度(比如一个角点肯定比平坦点更加有贡献度)。
最终两个点云的距离为:
在这里插入图片描述

最终距离用在损失函数里,它要能够符合预期:越匹配的点云距离越近,反之越远。
在这里插入图片描述
实验略过。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值