文章链接:3DFeat-Net:Weakly Supervised Local 3D Features for Point Cloud Registration
代码地址:[github]
摘要:本文提出了3D Feat-Net,它通过弱监督学习用于点云匹配的3D特征及其描述子。不同于现有研究,我们不需要人工标注的匹配点簇。相反地,我们利用对齐和注意力机制从GPS/INS标记的三维点云中学习特征的对应关系,而不是明确地指定(对应关系)。我们创建了训练和基准户外激光雷达数据集,实验表明3DFeat网络在这些重力对准数据集上获得了最先进的性能。
一、问题描述:
点云 P P P用大小为 N N N的3D点集表示:{
x i ∣ i = 1 , 2 , . . . , N x_i|i=1,2,...,N xi∣i=1,2,...,N},每一个点云 P ( m ) P^{(m)} P(m)都是以其中心 c m c_m cm为球心,固定大小的半径 R R R范围内裁剪出来的。我们假定在训练过程中,点云的绝对位姿可以从GPS/INS中获得,但其精度不足以推断点的对应关系。我们以两点云中心的欧式距离度量点云之间的距离: d ( m , n ) = ∣ ∣ c m − c n ∣ ∣ 2 d(m,n)=||c_m-c_n||_2 d(m,n)=∣∣cm−cn∣∣2。
我们使用三元组{
P ( a n c ) , P ( p o s ) , P ( n e g ) P^{(anc)}, P^{(pos)},P^{(neg)} P(anc),P(pos),P(neg)}进行训练。我们定义正实例为其到anchor的距离小于一个阈值,即 d ( a n c , p o s ) < τ p d(anc,pos)<\tau_p d(anc,pos)<τp,负实例为其到anchor的距离大于一定阈值,即 d ( a n c , p o s ) > τ n d(anc,pos)>\tau_n d(anc,pos)>τn。阈值的选择要使得正实例和负实例与anchor有较大或较小的重叠。
网络的目标是学习寻找对应关系集合:
{
( x 1 ( m ) , x 1 ( n ) ) , ( x 2 ( m ) , x 2 ( n ) ) , . . . , ( x L ( m ) , x L ( n ) ) ∣ x i ( m ) ∈ P ( m ) , x j ( n ) ∈ P ( n ) (x_1^{(m)},x_1^{(n)}),(x_2^{(m)},x_2^{(n)}),...,(x_L^{(m)},x_L^{(n)})|x_i^{(m)}\in P^{(m)},x_j^{(n)} \in P^{(n)} (x1(m),x1(n)),(x2(m),x2(n)