关于参数估计的两种途径的理解

注:此文为本人记录所用,不保证正确无误,若有问题还望看到的人及时批评指正,多谢。


首先明白:参数估计的最终目标是为了得到随机变量x的密度函数,这是二者的共同目的。
然而在实现这一目的的过程中,由于对这个参数的理解不同,所以最后得到的x的密度函数的表达形式也不尽相同。
频率派认为这个参数是个定值,求到了这个定值之后,就可以直接带入,得到x的密度函数,比如说x服从高斯分布,在已知其方差的情况下,我们只需要估计得x的期望(通过取对数,求导等方式获得),然后直接带入,就是一个完整且确定的密度函数;
而贝叶斯派则认为这个参数并不是一个定值,而是服从某种分布的随机变量,也就是说,它也有自己的密度函数,还想如同极大似然估计那样直接带入?那是明显不行的,因为这个密度函数会随着θ的变化而变化,是个不确定的值。那么我们应该怎么表示这个最终的目标:x的密度函数?下面是我对老师给的教材的第6讲,第11页的算术推导的理解:
式子1
这第一个式子的左边表示:在已有训练集大X的前提下,θ与x的联合概率密度,右边第一个因子表示以训练集与未知数θ为条件下,x的密度函数,第二个因子表示以训练集为条件的θ的条件概率。这个θ似乎很多余,很讨厌,如果没有的话,就是个很简单的条件概率计算公式。如果真的这么写的话,那就很清爽,很美观了(就是我们平常见到的贝叶斯公式嘛);嗯……如果真的这么写的话,我们后来的内容也就无法继续了。θ参与其中是可以理解的,因为x的密度函数以θ作为参数。
式子2
这个式子是说x可以由参数θ来独立表示出来,它只跟θ有关,不用训练集,跟训练集没有关系,这是很好理解的。
式子3
由全概率公式得到具体的x的概率密度的计算方法,这个就是我们的最终目的了。注意右方的积分对象的第一个因式P(x|θ),这个是含有θ的x的概率密度函数,表达式里面既有θ,也必有x;第二个因式是关于θ的表达式。所以二者相乘,是关于x,θ的。最后我们将其关于θ积分,就抹去了θ,只剩下x了,也就是我们所需要的x的密度函数。


在教材中的example部分,我觉得很有些问题很容易让人迷惑。1.尤其是第14页的那张图,好像表达的意思就是:测试集的样本空间越大,对μ的估计就越来越接近真实值,2.而且第13页的计算中也是用到了取对数然后求导的方法。这个好像就是频率派的所作所为嘛。很容易让人觉得困惑。
例子是这样描述的:某随机变量x服从正态分布,已知标准差,不知道期望,我们想通过测试集的数据来估计一下这个期望。然后……
其实到了第12页结束,目的就已经达到了。看式子3,右边第一个因式P(x|θ)为服从均值为θ,标准差为已知的标准差的正态分布的密度函数。第二个因式如下求出
式子4
结果将这两个相乘,对θ积分,就ok了。

12页之后只是为了给我们表现:随着测试集的不断扩大,p(θ|X)的分布情况。从图中那个可以看到,测试集扩大,则p(θ|X)的分布越来越明确——1.它的均值越来越靠近真实的x的均值;2.而且方差越来越小。这透露出一个信息:θ很可能是靠近真实的x的均值(也有可能远离x的真实均值,只是概率比较小而已),这个是比较符合我们的直观认知的。而13页,14页之后的内容只是有助于我们理解它随着数据集的变大,逐渐趋近极大似然估计。
图1

总结:二者的不同仅仅在于:贝叶斯估计得到的是个θ是个不确定的值,所以没法直接带入x的密度函数,而是需要求积分。这是二者在实现上的主要区别。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值