看书标记【统计学习理论与方法】1

文章介绍了在R语言中如何使用分布函数dfunc、pfunc、qfunc和rfunc进行概率计算,包括正态分布的示例。同时,探讨了马尔科夫不等式和切比雪夫不等式在概率上界的应用,以及中心极限定理和格里文科定理对统计推断的重要性。
摘要由CSDN通过智能技术生成

第一章 概率论基础

R中常用的分布类型举例
在R中,分布函数名为func,则形如dfunc的函数就提供了相应的概率分布函数

dfunc(x,p1,p2,...)

形如pfunc的函数提供了相应的累积分布函数

pfunc(q,p1,p2,...)

分位数函数,p为由概率构成的向量:

qfunc(p,p1,p2,...)

随机数生成函数

rfunc(n,p1,p2,...)

举个例子:

rnorm(10)##正态分布的随机数10个
normal.pop<-rnorm(1000)
par(mfrow=c(1,2)) ##准备在一行中绘制两个并列的图
plot(density(normal.pop),xlim=c(-4,4),main="标准正态分布(模拟)")
curve(dnorm(x),from=-4,to=4,main="标准正态分布(标准)")

##关于累积分布与分位数函数互为反函数
x1<-0:10
pmf<-dbinom(x1,10,0.5)
pmf
plot(pmf~x1,type="h") #绘制概率密度函数
cdf<-pbinom(x1,10,0.5)
cdf
plot(cdf~x1,type="s") #绘制累积分布函数
#将累积分布函数值作为输入参数传递给相应的分位数函数,可得结果为累积分布函数cdf的取值,可以表明两者互为反函数
inverse_cdf<-qbinom(cdf,10,0.5)
inverse_cdf  

马尔科夫不等式: P { X ≥ a } ≤ E [ X ] a P\{X\ge a\}\le \frac{E[X]}{a} P{Xa}aE[X].可作为推论得到切比雪夫不等式: P { ∣ X − μ ∣ ≥ k } ≤ σ 2 k 2 P\{|X-\mu|\ge k\}\le \frac{\sigma^2}{k^2} P{Xμk}k2σ2.两个不等式的重要性在于,在只知道随机变量的期望和方差时,可以得到概率上界,两种不等式常用于证明大数定理(大数定理也说明,只要总体k阶矩存在,那么样本的k阶矩以概率收敛到总体的k阶矩)。
中心极限定理告诉我们,若独立同分布的随机变量 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn,只要期望方差确定,当n足够大时,不管其分布如何,其分布都会服从正态分布。与之相像的有格里文科定理:频率分布会随着n的不断增大,逐渐接近概率分布。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值