一、统计学习方法——(第一章)概论梳理

 

前言:这是我第二次看蓝皮书,这一次看书的重点不在只局限于模型的使用,而更专注于模型的推导。对于一些不是很重要或者是常识性的的东西,本文将以思维导图的形式给出。另外,在学习过程中花书与此书是相辅相成的,一些已经证明过的会直接引用花书的推导(有链接的)。

 


一、知识梳理

首先对本章的所讲内容进行梳理,思维导图中并非所有的知识点都会讲解,自己能看懂的和不重要的就不写了。本文的知识梳理与书中章节顺序不同,主要是按自己的理解来,不喜勿喷。

 

 二、实现统计学习方法的步骤

  1. 得到一个有限的训练数据集合

  2. 确定包含所以可能的模型的假设空间,即学习模型的集合(不是单个模型,单个具体模型是解)

  3. 确定模型选择的准则—策略

  4. 实现求解最优模型的算法—算法

  5. 通过学习方法选择最优模型

  6. 利用学习的最优模型对新数据进行预测或分析

 

三、 有监督学习的基本形式(有监督有标签指导、无监督无标签指导)

注:图中的f与p有上标代表具体的决策与条件函数并不是模型的假设空间,学习系统其实更接近书中的模型假设空间的意思。

 

四、有监督算法分类

1)按功能

 

输入变量

输出变量

分类问题

离散或连续

离散

标注问题

观测序列

标记序列或状态序列

回归问题

连续

连续

2)按思想

生成方法:

能还原联合概率分布、学习收敛速度快(当样本容量增加时,学到的模型可以更快地收敛于真实模型)、当存在隐变量时,仍可以用生成学习方法(判别方法不能用)。典型的生成模型有朴素贝叶斯法和隐马尔科夫模型。

判别方法:

直接学习决策函数f(X)或者条件概率分布P(Y|X),直接面对预测,学习的准确率更高,可以对数据进行各种程度上的抽象、定义特征并使用特征,可以简化学习问题。典型的判别模型有:k近邻法,感知机,决策树,逻辑斯蒂回归模型,最大熵模型,支持向量机,提升方法和条件随机场等。

五、模型策略(其他两个要素好理解,不说了)

期望风险函数:它是理论上模型关于联合分布P(X,Y)的平均意义下的损失,称为风险函数。但是这个函数有个问题—就是你没有先验求不了。

经验风险函数:是关于训练样本集的平均损失,可求。

补充:看下使可以发现经验风险就是使用频数去近似误差出现的概率,类似均值等于期望。

六、模型评估与模型选择 

1、模型评估

当给定损失函数时,基于损失函数的学习方法评估标准:模型的训练误差、模型的预测误差。公式蓝皮P10-1.14~1.15。当损失函数变为0-1函数时,测试误差变为误差率,并由此得知模型在测试集上的准确率。训练误差主要衡量问题是不是一个容易学习的问题(意义不大),测试误差反映学习方法对未知数据的预测能力。

2、模型选择(根据评估标准去选择模型呢?)

原因:模型选择时,不仅应该考虑对已知数据的预测能力,也应该考虑对未知数据的预测能力,因此无法单一的使用训练误差与测试误差来选择模型(评估标准只能确定当前模型的上界,不能确定好坏)。随着模型复杂度的增加,训练误差会减小,直至趋向于0,但是测试误差会先减小后增大。应选择复杂度适当的模型,以达到使测试误差最小。

根据评估标准,模型可分为三类:理想模型、模型过拟合、模型欠拟合

理想模型:

参数个数越多,模型的复杂程度越高。假设存在一个“真”模型,我们所选择的模型应该与真模型有相同个数的参数,所选择模型的向量与真模型的参数向量应相近。

过拟合模型

如果一味追求对数据的预测能力,所选模型复杂度往往会比真模型高,这种现象称为过拟合。过拟合是指学习时选择的模型所包含的参数过多,以至于这一模型对已知数据预测的很好,对未知数据预测的很差的现象。

欠拟合模型:与过拟合模型相反

 

3、选择方法(如何避免过拟合)

补充:针对欠拟合只有增加模型的复杂程度就可以解决所有不是主要问题

1)正则化

正则化是结构风险最小化策略的实现。正则化一般有如下形式:常用的有L1和L2,具体区别见:

正则化的作用是同时选择经验风险与模型复杂度同时较小的模型。
补充:奥卡姆剃刀原理:在所有可能选择的模型中,能够很好地解释已知数据并且此模型很简单,这样的模型是最好的模型。从贝叶斯估计角度看,正则化项对应于模型的先验概率。可以假设复杂的模型有较小的先验概率,简单的模型有较大的先验概率。

2)交叉验证:

当数据充足时,可以将数据集切分为3部分,训练集(用于训练模型)、验证集(用于选择模型)、测试集(用于最终对学习方法的评估)。我们应选择对验证集有最小预测误差的模型。但是在实际中,数据是不充足的,所以用到交叉验证方法,其思想是:重复地使用数据;把给定的数据进行切分,将切分的数据集组合为训练集与测试集,在此基础上反复地进行训练、测试及模型选择。

简单交叉验证:首先随机地将已给数据分为两部分(训练集和测试集)。例如70%是训练集,30%为测试集。然后用训练集在各种条件下(例如,不同的参数个数)训练模型,从而得到不同模型。最后在测试集上评价各个模型的误差,选测试误差最小的那个模型。(不可混抽)

S折交叉验证:此方法应用最多。将数据集分成互不相交大小相同的S份,其中S-1个数据集的数据用于训练模型,剩下的一个数据集用于测试模型。将这一过程对可能的S种选择重复进行,最后选出S次评测中平均测试误差最小的模型。

留一交叉验证:这种情形是S=N,通常在数据缺乏情况下用。其中N是给定数据集的容量。

参考链接:https://blog.csdn.net/yj_445324989/article/details/88086522

七、泛化误差上界证明

1、泛化误差与泛化误差上界

泛化误差:泛化误差是所学习到的模型对未知数据的期望风险,未知数据我们不知道也算不了,但我们知道训练数据的经验风险。因此泛化误差可以使用已知数据的经验风险(也是一种误差)去逼近。

泛化误差上界:泛化误差上界则是已知数据经验风险+经验风险与期望风险的的偏差。见书P16-1.25

2、泛化误差上界(定理1.1)证明

证明思路:先证明假设空间的上界,再通过f_{N}\epsilon F,将模型的泛化上界限制在假设空间的泛化化上界中。注:证明中的任意f\epsilon F,只是对假设空间部分的泛化上界的描述,每个函数的\varepsilon_{i}不同。假设空间的上界是任意f的上界的上界。

证明:

补充:

推论:

1)泛化上界是样本容量的函数,当样本容量增加时,上界趋于0。

2)泛化上界还是假设空间容量的函数,空间容量越大,参数越多,模型越复杂,越难学习。

3)训练误差(经验风险)小,泛化误差(期望风险)也会小。

 

(1)极大似然估计 

第一步:似然函数:

补充:题中给出的分布是概率密度函数并不是概率,但在计算时我们直接使用概率密度f(xi)代替概率p(xi),主要是二者具有近似关系。

第二步:对数似然函数:

第三步:利用似然函数梯度求解参数

           同理 

 (2)贝叶斯估计

 第一步:代入贝叶斯公式

 第二步:模型目标为(注:分母为固定值因此不影响求极值;因为x_{i}相互独立,所以分子可以写成连乘积的形式。

上述为最大后验概率,因为它根本就没求分母所以不是贝叶斯估计(注:不影响求极值不是不求)。正确的如下: 

 注:之所以x写成连乘积,是因为每一个样本x都被当成一个变量;均值的分布只有一个是因为参数只是一个变量,且只有一个分布。

 第三步:在此处我取了对数(理论上是不用取的)

 第四步:代入各自的分布

第五步:求解(与极大似然的结果近似,不写具体步骤啦) 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值