机器学习
文章平均质量分 66
不会算法的数学小白
这个作者很懒,什么都没留下…
展开
-
TensorFlow创建模拟数据集
创建带有迭代值且支持乱序功能的模拟数据集下面将从四个方面介绍生成模拟数据定义占位符建立会话并获取数据数据的可视化1. 生成模拟数据生成模拟数据首先得有一个模拟数据生成器,为使得生成器具有迭代功能,可以在定义的GenerateData函数中传入training_epochs参数。具体实现如下(生成100个数据的样本):import tensorflow as tfimport numpy as npimport matplotlib.pyplot as pltfrom skle原创 2021-09-07 20:00:09 · 990 阅读 · 1 评论 -
Pytorch之神经网络
Pytorch实现基础的神经网络使用Pytorch配合MNIST数据集实现基础的神经网络下面从四个方面实现加载数据——Data Loader建立模型,定义损失函数和优化函数训练模型测试保存模型加载数据——Data Loader要求下载训练集 MNIST,创建符合要求的DataLoader变量data_loader,同时按要求输出特定数据的维度大小和类别,使用pytorch读取训练集是非常便捷的,只需要使用到两个类:torch.utils.data.Datasettorch.ut原创 2021-09-06 22:20:27 · 1653 阅读 · 2 评论 -
保姆级教程 安装tensorflow-gpu(傻瓜级)
保姆级教程 安装tensorflow-gpu由于之前安装tensorflow时不懂,所以安装的是cpu版本的,之后再次安装了gpu版本的,但是系统还是会自动使用cpu版本的,一怒之下便把两个版本的都给卸载了。由于之前安装的时候遇到许多坑,所以我决定写个手把手教小白的教程,毕竟本人自己就是小白一个。卸载首先把自己电脑里面的tf给他卸载了。卸载方式在这个里面输入pip uninstall tensorflow就完事了安装AnacondaAnaconda官网选择自己电脑版本的下载就完事了,然后就原创 2021-04-21 17:16:28 · 385 阅读 · 0 评论 -
基础神经网络
神经网络构建一个最简单的包括输入层,一层隐藏层和输出层的基础神经网络模型1.准备数据,使用sklearn.datasets.make_moons这个数据集来测试:np.random.seed(1)X,Y = sklearn.datasets.make_moons(n_samples=200,noise=.2)X,Y = X.T, Y.reshape(1, Y.shape[0])m = X.shape[1] #样本个数dim = X.shape[0] #特征维度2.参数初始化def原创 2021-04-07 00:26:43 · 226 阅读 · 0 评论 -
python实现逻辑回归预测
逻辑回归实现逻辑回归定义:logistic回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相同之处。它们的模型形式基本上相同,都具有 w‘x+b,其中w和b是待求参数,其区别在于他们的因变量不同,多重线性回归直接将w‘x+b作为因变量,即y =w‘x+b,而logistic回归则通过函数L将w‘x+b对应一个隐状态p,p =L(w‘x+b),然后根据p 与1-p的大小决定因变量的值。如果L是logistic函数,就是logistic回归,如果L是原创 2021-04-06 01:43:08 · 2354 阅读 · 0 评论