计算机视觉
文章平均质量分 94
不会算法的数学小白
这个作者很懒,什么都没留下…
展开
-
何凯明最新一作:Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners何凯明大神最新一作,mask输入图像的随机patch,并重建移除的像素。主要提出两点:1.提出一种非对称的编码器-解码器2.mask高比例的输入图像patch将变成一个不错且有意义的自监督任务摘要本文表明,掩码自编码器 (MAE) 是用于计算机视觉的可扩展自监督学习器。 我们的 MAE 方法很简单:我们屏蔽输入图像的随机块并重建丢失的像素。 它基于两个核心设计。 首先,我们开发了不对称编码器 -原创 2021-11-19 17:26:21 · 4707 阅读 · 0 评论 -
ICCV2021 Learning Spatio-Temporal Transformer for Visual Tracking
ICCV2021 Learning Spatio-Temporal Transformer for Visual Tracking论文实现:学习用于视觉跟踪的时空转换器摘要在本文中,我们提出了一种以编码器-解码器转换器为关键组件的新跟踪架构。 编码器对目标对象和搜索区域之间的全局时空特征依赖性进行建模,而解码器学习查询嵌入来预测目标对象的空间位置。 我们的方法将对象跟踪作为一个直接的边界框预测问题,而不使用任何提议或预定义的锚点。 使用编码器-解码器转换器,对象的预测仅使用简单的全卷积网络,该网络直原创 2021-10-18 16:08:06 · 2573 阅读 · 0 评论 -
2021CVPR Learning a Proposal Classifier for Multiple Object Tracking
Learning a Proposal Classifier for Multiple Object Tracking(学习用于多目标跟踪的建议分类器)项目开源地址:LPC_MOT多目标跟踪(MOT)的最新趋势是利用深度学习来提高跟踪性能。然而,以端到端方式解决数据关联问题并非易事。在本文中,我们提出了一种新的基于提议的可学习框架,将MOT建模为提议生成、提议评分和亲和图上的轨迹推理范式。该框架类似于两阶段目标检测器Faster RCNN,可以以数据驱动的方式解决MOT问题。对于建议生成,我们提出了一原创 2021-10-15 21:23:51 · 1128 阅读 · 0 评论 -
CVPR:Discriminative Appearance Modeling with Multi-track Pooling for Real-time Multi-object Tracking
2021CVPR MOT方向Discriminative Appearance Modeling with Multi-track Pooling for Real-time Multi-object Tracking(面向实时多目标跟踪的多航迹融合判别外观建模)摘要在多目标跟踪中,跟踪器在其内存中维护场景中每个对象的外观和运动信息。该内存用于查找轨迹和检测之间的匹配,并根据匹配结果进行更新。许多方法孤立地对每个目标进行建模,并且缺乏使用场景中的所有目标来联合更新内存的能力。当场景中有相似的物体时,原创 2021-10-08 21:33:16 · 723 阅读 · 0 评论 -
2021CVPR A Benchmark for Generic Multiple Object Tracking
2021CVPR A Benchmark for Generic Multiple Object Tracking项目开源地址:GMOT-40 A Benchmark for Generic Multiple Object Tracking原创 2021-09-27 21:40:38 · 571 阅读 · 0 评论 -
2021CVPR野外视频分割:Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild
2021CVPR Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild项目开源地址:Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild摘要本文提出了一种野外进行交互式视频对象分割的框架用户可以通过该框架迭代地选择一些帧进行注释,然后基于用户注释,分割算法细化掩码。曾经的交互式VO原创 2021-09-24 20:44:36 · 576 阅读 · 0 评论