数值计算(八)——数值积分与数值微分(2)

复化求积公式

上一节中讲到牛顿-柯特斯公式有一个缺陷,就是当使用高阶牛顿-柯特斯公式时,计算会变得不稳定,为了解决此问题,提高定积分的求积精度,一个方法就是把整个积分区间分为若干个子区间(通常是等分),再在每个子区间上采用低阶求积公式,这样使整个区间的积分获得较高的精度,也就是我们所说的复化求积公式
梯形复化求积公式:将积分区间 [ a , b ] [a,b] [a,b]等分为 n n n等份, x k = a + k h , h = b − a h , k = 0 , 1 , . . . , n x_k=a+kh,h=\frac{b-a}{h},k=0,1,...,n xk=a+kh,h=hba,k=0,1,...,n在每一个子区间 [ x k − 1 , x k ] , ( k = 1 , 2 , . . . , n ) [x_{k-1},x_k],(k=1,2,...,n) [xk1,xk],(k=1,2,...,n)上采用梯形公式得到:
∫ a b f ( x ) d x = ∑ k − 1 n ∫ x k − 1 x k f ( x ) d x = h 2 ∑ k = 1 n [ f ( x k − 1 ) + f ( x k ) ] + E n ~ ( f ) \qquad\qquad\qquad \int\nolimits_a^bf(x)dx=\sum\limits_{k-1}^n\int\nolimits_{x_{k-1}}^{x_k}f(x)dx=\frac{h}{2}\sum\limits_{k=1}^n[f(x_{k-1})+f(x_k)]+\widetilde{E_n}(f) abf(x)dx=k1nxk1xkf(x)dx=2hk=1n[f(xk1)+f(xk)]+En (f)

令 T n ( f ) = ∑ k = 1 n [ f ( x k − 1 ) + f ( x k ) ] = h 2 [ f ( a ) + 2 ∑ k = 1 n − 1 f ( x k ) + f ( b ) ] \qquad\qquad\qquad令T_n(f)=\sum\limits_{k=1}^n[f(x_{k-1})+f(x_k)]=\frac{h}{2}[f(a)+2\sum\limits_{k=1}^{n-1}f(x_k)+f(b)] Tn(f)=k=1n[f(xk1)+f(xk)]=2h[f(a)+2k=1n1f(xk)+f(b)]

E n ~ ( f ) = − b − a 12 h 2 f ′ ′ ( η ) , η ∈ [ a , b ] \qquad\qquad\qquad\qquad\qquad \qquad\qquad \widetilde{E_n}(f)=-\frac{b-a}{12}h^2f''(\eta),\eta\in[a,b] En (f)=12bah2f(η),η[a,b]

T n ( f ) T_n(f) Tn(f)就是我们使用梯形复化求积公式所得到的结果和对应的误差。同理我们也可以得到辛普森公式的复化求积公式形式:
复化Simpson公式:
∫ a b f ( x ) d x = h 6 [ f ( a ) + 4 ∑ k = 1 n f ( x k − 1 2 ) + 2 ∑ k = 1 n f ( x k ) + f ( b ) ] + E n ~ ( f ) \qquad\qquad\qquad\int\nolimits_a^bf(x)dx=\frac{h}{6}[f(a)+4\sum\limits_{k=1}^{n}f(x_{k-\frac{1}{2}})+2\sum\limits_{k=1}^{n}f(x_k)+f(b)]+\widetilde{E_n}(f) abf(x)dx=6h[f(a)+4k=1nf(xk21)+2k=1nf(xk)+f(b)]+En (f)

E n ~ ( f ) = − 1 2880 ( b − a ) h 4 f ( 4 ) ( η ) , η ∈ [ a , b ] \qquad\qquad\qquad\qquad\qquad\qquad\qquad \widetilde{E_n}(f)=-\frac{1}{2880}(b-a)h^4f^{(4)}(\eta),\eta\in[a,b] En (f)=28801(ba)h4f(4)(η),η[a,b]

自适应复化求积法

在实际使用复化求积公式时,要求预先给定n或者步长h,但实际上这两个数据都是难以把握的,如果步长太大会造成误差过大,但是步长太小又会造成计算复杂度明显增加。所以实际使用中往往是是一个较大的步长作为初始,当计算精度没达到要求时,然后再将步长减半,直到达到精度要求,这也就是所谓的自适应复化求积法。

带导数值的求积公式及其复化公式就留作思考啦。

Gauss求积公式

在这里插入图片描述
而这其中最为重要的便是求解高斯系数和高斯点。
在这里插入图片描述
搞个题目大家就明白了:
在这里插入图片描述
当然这道题目显然是比较复杂的,实际上我们常使用的权函数都是比较简单的,可以直接使用我们之前学过的勒让德正交多项式或者契比雪夫正交多项式的。
现在我们来研究一下这种方法的误差
在这里插入图片描述
在这里插入图片描述
实战使用就大家自己练习咯!!!

欢乐的时光总是短暂的,让我们下一次再见!!!
good good study,day day up! (study hard, improve every day)
预知后事,请听下回分解!!!
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值