[论文阅读] Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World

文章探讨了领域随机化作为解决物理模拟器与现实世界差异的方法,通过在模拟中引入随机性训练深度学习模型,实现在单目相机图像的物体检测任务上从模拟到现实世界的有效迁移,且在实际机器人实验中取得良好效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

INTRODUCTION

  • 物理模拟器和现实世界之间的差异使得从模拟中转移行为具有挑战性
  • 像图像渲染器这样的低保真度模拟传感器往往无法再现现实世界中的同类传感器所产生的丰富性和噪声,这些差异,统称为现实差距,形成了在真实机器人上使用模拟数据的障碍
  • 本文探讨了领域随机化,这是一种简单但有前途的解决现实差距的方法;将模拟器随机化,以便在训练时将模型暴露在广泛的环境中
    • 这项工作的目的是检验以下假设:如果模拟中的可变性足够显著,那么在模拟中训练的模型将在没有额外训练的情况下推广到现实世界
    • 我们专注于从低保真度模拟相机图像转移的挑战
  • 这项工作是朝着使用深度学习提高目标检测流程准确性的目标迈出的第一步。此外,我们将对象定位的模拟-真实转移视为转移通用操作行为的垫脚石
  • 我们能够仅使用用简单算法生成的纹理渲染的模拟数据来训练一个在现实世界中精确到1.5厘米左右的检测器
  • 本文首次证明了领域随机化对于需要精度的机器人任务是有用的
  • 我们发现,在有足够数量的纹理的情况下,不需要使用真实图像来预训练对象检测器
  • 据我们所知,这是仅在模拟RGB图像上训练的深度神经网络首次成功转移到现实世界,用于机器人控制
  • 领域自适应和迭代学习控制是解决现实差距的重要工具,我们的方法不需要对真实世界的数据进行额外的培训
  • 我们的方法也不依赖于精确的相机信息或校准,而是随机化模拟器中相机的位置、方向和视场;只使用通过简单的随机生成过程创建的非真实纹理的方法,能够对场景的数十万(或更多)独特纹理进行训练

METHOD

给定一些感兴趣的对象

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值