推荐系统顶会论文总结——KDD 2021

KDD 2021 推荐系统论文精华解析
KDD 2021大会涵盖了新闻推荐、消除流行偏见、目标显示广告等多个领域的研究,涉及推荐算法、因果推理、多任务学习等关键点。论文探讨了知识图谱在新闻推荐中的应用、对抗性特征翻译、兴趣群组的推荐扩展、无嵌入表的特征嵌入学习等创新方法,并关注了在线推荐、广告策略和隐私保护等问题。

KDD2021

1.Reinforced Anchor Knowledge Graph Generation for News Recommendation Reasoning
Author(Institute): Jianxun Lian

KeyWords: news recommender; knowledge graph; recommendation reasoning

Dataset: MIND; Bing News

2.Model-Agnostic Counterfactual Reasoning for Eliminating Popularity Bias in Recommender System
Author(Institute): Jinfeng Yi

KeyWords: Recommendation; Popularity Bias; Causal Reasoning

Dataset: ML10M; Adressa; Globo; Gowalla; Yelp

3.Modeling the Sequential Dependence among Audience Multi-step Conversions with Multi-task Learning in Targeted Display Advertising
Author(Institute): Dongbo Xi

KeyWords: Sequential Dependence; Multi-step Conversions; Multi-task Learning; Targeted Display Advertising

Dataset: Meituan; Co-Branded Credit Cards; Ali-CCP

4.Learning to Expand Audience via Meta Hybrid Experts and Critics for Recommendation and Advertising
Author(Institute): Yudan Liu

KeyWords: Look-alike; Audience Expansion; Meta Learning; Campaign

Dataset: Tencent; WeChat

5.Adversarial Feature Translation for Multi-domain Recommendation
Author(Institute): Xiaobo Hao

KeyWords: recommender system; multi-domain recommendation; GAN

Dataset: Netflix; MDR-5B

6.Debiasing Learning based Cross-domain Recommendation
Author(Institute): Yuxiao Dong

KeyWords: Debias

7.MixGCF: An Improved Training Method for Graph Neural Network-based Recommender Systems
Author(Institute): Yuxiao Dong

KeyWords: Collaborative Filtering; Recommender Systems; Graph Neural Networks; Negative Samplin

Dataset: Alibaba; Yelp2018; Amazon

8.Multi-view Denoising Graph Au

### 查找最新级会议论文的方法 对于获取最新的关于推荐系统级会议论文,可以访问国际知名数据库和学术搜索引擎。这些平台定期更新并收录来自全球各地的重要研究成果[^1]。 #### 使用Google Scholar搜索 通过Google Scholar (scholar.google.com),输入关键词如"recommendation system" AND "conference paper" AND "2023", 可以找到最近一年内发表的相关文章。此方法能够帮助定位到最前沿的研究成果。 #### 访问特定领域内的权威期刊网站 IEEE Xplore Digital Library 和 ACM Digital Library 是两个重要的资源库,在这里可以根据主题浏览不同年份的会议记录以及特别议题专刊。特别是像SIGIR, WWW, KDD这样的大型综合性数据挖掘与信息检索会议上经常会有高质量的推荐算法研究发布。 #### 关注专门跟踪区块链技术发展的资讯渠道 虽然主要关注的是区块链领域的内容,但是有时也会涉及到跨学科的应用场景,比如基于分布式账本技术改进个性化服务机制等方面的工作可能会被提及[^2]。 为了更精准地发现目标文献,建议订阅感兴趣的会议通知邮件列表或者利用RSS阅读器来监控多个来源的信息流变化情况;同时也可以加入一些专业社群参与讨论交流获得一手资料分享机会。 ```python import requests from bs4 import BeautifulSoup def fetch_papers(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') titles = [] for item in soup.select('.gs_rt a'): title = item.get_text() link = item['href'] titles.append((title,link)) return titles[:5] url = "https://scholar.google.com/scholar?q=recommendation+system+conference+paper+2023" papers = fetch_papers(url) for idx,paper in enumerate(papers,start=1): print(f"{idx}. {paper[0]} ({paper[1]})") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值