KDD2021
1.Reinforced Anchor Knowledge Graph Generation for News Recommendation Reasoning
Author(Institute): Jianxun Lian
KeyWords: news recommender; knowledge graph; recommendation reasoning
Dataset: MIND; Bing News
2.Model-Agnostic Counterfactual Reasoning for Eliminating Popularity Bias in Recommender System
Author(Institute): Jinfeng Yi
KeyWords: Recommendation; Popularity Bias; Causal Reasoning
Dataset: ML10M; Adressa; Globo; Gowalla; Yelp
3.Modeling the Sequential Dependence among Audience Multi-step Conversions with Multi-task Learning in Targeted Display Advertising
Author(Institute): Dongbo Xi
KeyWords: Sequential Dependence; Multi-step Conversions; Multi-task Learning; Targeted Display Advertising
Dataset: Meituan; Co-Branded Credit Cards; Ali-CCP
4.Learning to Expand Audience via Meta Hybrid Experts and Critics for Recommendation and Advertising
Author(Institute): Yudan Liu
KeyWords: Look-alike; Audience Expansion; Meta Learning; Campaign
Dataset: Tencent; WeChat
5.Adversarial Feature Translation for Multi-domain Recommendation
Author(Institute): Xiaobo Hao
KeyWords: recommender system; multi-domain recommendation; GAN
Dataset: Netflix; MDR-5B
6.Debiasing Learning based Cross-domain Recommendation
Author(Institute): Yuxiao Dong
KeyWords: Debias
7.MixGCF: An Improved Training Method for Graph Neural Network-based Recommender Systems
Author(Institute): Yuxiao Dong
KeyWords: Collaborative Filtering; Recommender Systems; Graph Neural Networks; Negative Samplin
Dataset: Alibaba; Yelp2018; Amazon
8.Multi-view Denoising Graph Au
KDD 2021 推荐系统论文精华解析

KDD 2021大会涵盖了新闻推荐、消除流行偏见、目标显示广告等多个领域的研究,涉及推荐算法、因果推理、多任务学习等关键点。论文探讨了知识图谱在新闻推荐中的应用、对抗性特征翻译、兴趣群组的推荐扩展、无嵌入表的特征嵌入学习等创新方法,并关注了在线推荐、广告策略和隐私保护等问题。
最低0.47元/天 解锁文章
310

被折叠的 条评论
为什么被折叠?



