一.开始
本文记录了在谷歌平台colab上使用mmdetV2.20训练自己的模型,包括具体流程和ipynb代码,使用colab的优点是价格较其他云平台较实惠,并且容易上手,缺点是存在限额,存在人机验证,每次最多使用24小时
二.修改并上传项目文件
出于方便修改的原因,我是在本地先下载mmdet项目,修改好具体代码,然后再上传到Google drive的。当然也可以在colab/drive中修改代码,不过稍微麻烦一点
1. 下载项目
到mmdet官网下载项目文件,本次项目选用了最新的V2.20
2. 制作coco数据集
制作自己的coco数据集,具体制作流程参考我之前发的文章,然后在mmdet项目下创建新文件夹data,将数据集放在里面,详细的信息如下图
3. 修改参数
需要修改的文件全部在config文件夹下,主要有两个文件夹
- configs/ bash 下的文件(定义基本的训练通用参数, 重点!)
- configs/具体模型(使用什么模型就修改对应文件参数)
3.1. configs/_bash_需要修改的参数
(1)configs/ base /datasets/coco_detection.py
首先修改训练/测试时候的 图片尺寸,我设置是640x640;其次修改训练/验证的 batch_size,分别对应第二个图的samples_per_gpu和interval,我这里设置是16(这个看GPU的性能)
(2)configs/ base /models/cascade_rcnn_r50_fpn.py(或其他模型)
这一步主要是修改种类数,修改 num_classes 为自己的类别(不需要考虑背景+1,有几种就修改成几种),这里我的瑕疵类别有3种
<