【colab】在colab上使用mmdet训练自己的数据

本文详细介绍了如何在Google Colab上使用mmdet V2.20训练自己的COCO数据集,包括下载项目、修改配置、上传到Google Drive、新建Colab笔记本并进行训练等步骤。同时,提到了训练过程中的关键参数修改,如图片尺寸、batch_size、最大轮次和学习率等,并讨论了Colab训练的优势和限制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.开始

本文记录了在谷歌平台colab上使用mmdetV2.20训练自己的模型,包括具体流程和ipynb代码,使用colab的优点是价格较其他云平台较实惠,并且容易上手,缺点是存在限额,存在人机验证,每次最多使用24小时

二.修改并上传项目文件

出于方便修改的原因,我是在本地先下载mmdet项目,修改好具体代码,然后再上传到Google drive的。当然也可以在colab/drive中修改代码,不过稍微麻烦一点

1. 下载项目

mmdet官网下载项目文件,本次项目选用了最新的V2.20

2. 制作coco数据集

制作自己的coco数据集,具体制作流程参考我之前发的文章,然后在mmdet项目下创建新文件夹data,将数据集放在里面,详细的信息如下图
请添加图片描述

3. 修改参数

需要修改的文件全部在config文件夹下,主要有两个文件夹

  • configs/ bash 下的文件(定义基本的训练通用参数, 重点!
  • configs/具体模型(使用什么模型就修改对应文件参数)

3.1. configs/_bash_需要修改的参数

(1)configs/ base /datasets/coco_detection.py

首先修改训练/测试时候的 图片尺寸,我设置是640x640;其次修改训练/验证的 batch_size,分别对应第二个图的samples_per_gpu和interval,我这里设置是16(这个看GPU的性能)
请添加图片描述
请添加图片描述

(2)configs/ base /models/cascade_rcnn_r50_fpn.py(或其他模型)

这一步主要是修改种类数,修改 num_classes 为自己的类别(不需要考虑背景+1,有几种就修改成几种),这里我的瑕疵类别有3种
请添加图片描述

<
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小鸠控

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值